BSOJ 2414 -- 【JSOI2011】分特产
Description
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
Input
输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000.
Output
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
MOD 1,000,000,007 的数值就可以了。
Sample Input
5 4 1 3 3 5
Sample Output
384835
首先,如果没有“每个人至少拿一个”的限制,那么答案就用经典的插板法解决。。
然后我们肯定要容斥一下。还是老套路,我们要-{至少有一个人没有特产的方案}+{至少有两个人没有特产的方案}-{至少有三个人没有特产的方案}...
考虑求至少k个人没拿到特产的方案。首先我们要枚举哪k个人没拿到特产,然后再将所有特产分给剩下的n-k个人。所以方案数就是。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#define ll long long
#define mod 1000000007ll
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m;
int w[1005];
ll f[1005],g[1005];
ll c[2005][2005],s,ans,tot[1005];
int main() {
n=Get(),m=Get();
c[0][0]=1;
for(int i=1;i<=2000;i++)
for(int j=0;j<=i;j++)
c[i][j]=(!j||i==j)?1:(c[i-1][j-1]+c[i-1][j])%mod;
for(int i=1;i<=m;i++) w[i]=Get();
for(int i=1;i<=n;i++) {
tot[i]=1;
for(int j=1;j<=m;j++) {
tot[i]=tot[i]*c[w[j]+i-1][i-1]%mod;
}
}
int flag=1;
for(int i=n;i>=1;i--) {
ans=(ans+flag*c[n][i]*tot[i]%mod+mod)%mod;
flag*=-1;
}
cout<<ans;
return 0;
}
BSOJ 2414 -- 【JSOI2011】分特产的更多相关文章
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- 题解-JSOI2011 分特产
题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...
- ●BZOJ 4710 [Jsoi2011]分特产
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...
随机推荐
- Java 8 新特性-菜鸟教程 (8) -Java 8 日期时间 API
Java 8 日期时间 API Java 8通过发布新的Date-Time API (JSR 310)来进一步加强对日期与时间的处理. 在旧版的 Java 中,日期时间 API 存在诸多问题,其中有: ...
- js从一个对象数组中根据属性值大小排序
<script type="text/javascript"> var sdts = [ {name:"小明",age:30}, {name:&qu ...
- redhat 下搭建网站
1.修改yum源 把iso重新挂载到/media路径下,media是个只读的文件 vi /etc/yum.repos.d/rhel-source.repo //编辑yum源文件 ...
- windows环境下pycharm如何设置Linux编码
最近写代码一直在windows环境下,写完之后再传到Linux端就会出现代码格式错乱. 解决办法: 在windows端的pycharm代码格式设置为unix and os及可以解决这个问题. 如果你要 ...
- AngularJS+Ionic开发-1.搭建开发环境
临时项目需要使用AngularJS+Ionic+Cordova技术,半年前跟别人用过一段时间做过几个页面,目前别人已经无法联系了,只能我自己上了. 上次做完项目后,想抽时间好好巩固一下这方面的知识面来 ...
- MVC架构介绍——自运行任务
实例产品基于asp.net mvc 5.0框架,源码下载地址:http://www.jinhusns.com/Products/Download 通过自运行任务来调度及执行程序中需要定时触发或处理的一 ...
- SqlHelper 1.0
SqlHelper类,可以简化对数据库的操作. 将程序中需要经常用到的数据库操作,如:连接字符串.对数据的增.删.改.查封装成“SqlHelper”类中的静态属性,方便在程序各部分进行调用. 增(in ...
- Codeforces672D(SummerTrainingDay01-I)
D. Robin Hood time limit per test:1 second memory limit per test:256 megabytes input:standard input ...
- 大家好,我是一个热爱编程的大二在读生,今天来移植一下CSDN上的博客
今天开了博客园,将原来再CSDN上的博客移植一下,嘿嘿嘿.
- 10个最佳 Javascript+HTML5 演示文稿框架
JavaScript 与 HTML5 框架在创建基于现代浏览器的演示文稿时发挥了重要作用.他们把展示插入网页,为演示信息提供了一个有效方式.一般来说,手工插入花费大量事件和精力,它很复杂,以至于新手们 ...