Description

JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。

JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。

例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的

分配方法:

A:麻花,B:麻花、包子

A:麻花、麻花,B:包子

A:包子,B:麻花、麻花

A:麻花、包子,B:麻花

Input

输入数据第一行是同学的数量N 和特产的数量M。

第二行包含M 个整数,表示每一种特产的数量。

N, M 不超过1000,每一种特产的数量不超过1000.

Output

输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果

MOD 1,000,000,007 的数值就可以了。

Sample Input

5 4 1 3 3 5

Sample Output

384835

首先,如果没有“每个人至少拿一个”的限制,那么答案就用经典的插板法解决。

然后我们肯定要容斥一下。还是老套路,我们要-{至少有一个人没有特产的方案}+{至少有两个人没有特产的方案}-{至少有三个人没有特产的方案}...

考虑求至少k个人没拿到特产的方案。首先我们要枚举哪k个人没拿到特产,然后再将所有特产分给剩下的n-k个人。所以方案数就是

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#define ll long long
#define mod 1000000007ll using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n,m;
int w[1005];
ll f[1005],g[1005];
ll c[2005][2005],s,ans,tot[1005];
int main() {
n=Get(),m=Get();
c[0][0]=1;
for(int i=1;i<=2000;i++)
for(int j=0;j<=i;j++)
c[i][j]=(!j||i==j)?1:(c[i-1][j-1]+c[i-1][j])%mod;
for(int i=1;i<=m;i++) w[i]=Get();
for(int i=1;i<=n;i++) {
tot[i]=1;
for(int j=1;j<=m;j++) {
tot[i]=tot[i]*c[w[j]+i-1][i-1]%mod;
}
}
int flag=1;
for(int i=n;i>=1;i--) {
ans=(ans+flag*c[n][i]*tot[i]%mod+mod)%mod;
flag*=-1;
}
cout<<ans;
return 0;
}

BSOJ 2414 -- 【JSOI2011】分特产的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  3. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  4. 4710: [Jsoi2011]分特产

    4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...

  5. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  6. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  7. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

  8. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  9. 题解-JSOI2011 分特产

    题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...

  10. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

随机推荐

  1. [转]angular2在运行ng serve的时候卡在95% emitting LicenseWebpackPlugin

    本文转自:https://blog.csdn.net/qq919694688/article/details/80912207 放弃使用cnpm,使用yarn 1.删除node_modules (不需 ...

  2. Topshelf 学习 跨平台【转载】

    Topshelf 学习 跨平台   Topshelf是一个开源的跨平台的宿主服务框架,支持Windows和Mono,只需要几行代码就可以构建一个很方便使用的服务宿主. 官网:http://topshe ...

  3. [PHP]算法- 二叉树的深度的PHP实现

    二叉树的深度: 输入一棵二叉树,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度. 思路: 1.非递归层序遍历 2.使用辅助队列,根结点先入队列 ...

  4. Java并发编程:线程的生命周期是个怎样的过程?

    前言 在日常开发过程中,如果我们需要执行一些比较耗时的程序的话,一般来说都是开启一个新线程,把耗时的代码放在线程里,然后开启线程执行.但线程是会耗费系统资源的,如果有多个线程同时运行,互相之间抢占系统 ...

  5. win10 管理工具中添加 oracle 10g驱动

    重装了系统,在应用oracle 10g时,一直在管理工具中没有添加成功ODBC驱动,今天找到解决方法了. 状态如下: 解决方法: c盘——windows——SysWOW64——odbcad32.exe ...

  6. elasticsearch6.7 05. Document APIs(3)GET API

    2.GET API get API 可以通过文档id从索引中获取json格式的文档,以下示例从twitter索引中获取type为_doc,id值为0为的JSON文档: GET twitter/_doc ...

  7. Integer to Boolean strange syntax

    Question: I'm less than a year into C++ development (focused on other languages prior to this) and I ...

  8. Redis的五种数据类型的简单介绍和使用

    1.准备工作: 1.1在Linux下安装Redis  https://www.cnblogs.com/dddyyy/p/9763098.html 1.2启动Redis 先把root/redis的red ...

  9. css 单位px、em、rem、vh、vw、vmin、vmax区别

    1.px:相对长度单位.像素px是相对于显示器屏幕分辨率而言的. 2.em:相对长度单位.相对于当前对象内文本的字体尺寸.如当前对行内文本的字体尺寸未被人为设置,则相对于浏览器的默认字体尺寸. 看下面 ...

  10. JS中使用document.defaultView.getComputedStyle()、currentStyle()方法获取CSS属性值

    在对网页进行调试的过程中,经常会用到js来获取元素的CSS样式,方法有很多很多,现在仅把我经常用的方法总结如: 1. obj.style:这个方法只能JS只能获取写在html标签中的写在style属性 ...