题意:给点N棵树,前K棵是已经拥有的,现在可以再拥有一棵树,问形成的最大凸包面积。

思路:先求K棵树的凸包C,然后对于后面的N-K棵树,我们先判断是否在凸包内,如果不在,我们要求两个切线。 这里分类讨论,即可。

如果点在C的左边,那么两条切线分别一上一下; 如果在下边,两条切线一左一右。 然后去对应区间二分即可。

(好像还有双指针的线性做法:求两个凸包,维护两条切线即可。

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
struct point{
ll x,y;
point(){}
point(ll xx,ll yy):x(xx),y(yy){}
};
bool cmp(point w,point v){
if(w.x!=v.x) return w.x<v.x;
return w.y<v.y;
}
ll det(point a,point b){ return a.x*b.y-a.y*b.x;}
ll dot(point a,point b){ return a.x*b.x+a.y*b.y;}
point operator +(point a,point b){ return point(a.x+b.x,a.y+b.y);}
point operator -(point a,point b){ return point(a.x-b.x,a.y-b.y);}
point a[maxn],ch[maxn]; int top,ttop;
void convexhull(int N)
{
for(int i=;i<=N;i++){
while(top>&&det(ch[top]-ch[top-],a[i]-ch[top-])<=) top--;
ch[++top]=a[i];
}
ttop=top;
for(int i=N-;i>=;i--){
while(top>ttop&&det(ch[top]-ch[top-],a[i]-ch[top-])<=) top--;
ch[++top]=a[i];
}
}
int get(int L,int R,int i,int w)
{
while(L<R){
int Mid=(L+R)>>;
if(det(ch[Mid]-a[i],ch[Mid+]-a[i])*w>) R=Mid;
else L=Mid+;
}
return L;
}
int bord(int L,int R,int i,int w)
{
while(L<R){
int Mid=(L+R)>>;
if((ch[Mid].x-a[i].x)*w<) L=Mid+;
else R=Mid;
}
return L;
}
ll ans,sum[maxn],tmp;
int main()
{
int N,K;
scanf("%d%d",&N,&K);
rep(i,,N) scanf("%lld%lld",&a[i].x,&a[i].y);
sort(a+,a+K+,cmp); convexhull(K);
rep(i,,top-) ans+=det(ch[i],ch[i+]),sum[i+]=ans;
rep(i,K+,N){
if(a[i].x<ch[].x){
int L=get(,ttop,i,),R=get(ttop,top,i,-);
tmp=sum[R]-sum[L]+det(ch[R],a[i])+det(a[i],ch[L]);
}
else if(a[i].x>ch[ttop].x){
int L=get(,ttop,i,-),R=get(ttop,top,i,);
tmp=sum[top]-sum[R]+sum[L]+det(ch[L],a[i])+det(a[i],ch[R]);
}
else if(det(ch[ttop]-a[],a[i]-ch[])>){//shang
int Mid=bord(ttop,top,i,-);
if(Mid>ttop&&det(ch[Mid]-ch[Mid-],a[i]-ch[Mid-])>) continue;
int L=Mid>ttop?get(ttop,Mid-,i,-):Mid;
int R=get(Mid,top,i,);
tmp=sum[top]-sum[R]+sum[L]+det(ch[L],a[i])+det(a[i],ch[R]);
}
else {
int Mid=bord(,ttop,i,);
if(Mid>&&det(ch[Mid]-ch[Mid-],a[i]-ch[Mid-])>) continue;
int L=Mid>?get(,Mid-,i,-):;
int R=get(Mid,ttop,i,);
tmp=sum[top]-sum[R]+sum[L]+det(ch[L],a[i])+det(a[i],ch[R]);
}
ans=max(ans,tmp);
}
printf("%lld.%lld\n",ans/,ans%*);
return ;
}
/*
5 3
-5 -5
-5 5
5 -5
-4 6
5 5
*/

Gym - 101201E:Enclosure (点到凸包的切线)的更多相关文章

  1. Gym 101606B - Breaking Biscuits - [凸包+旋转卡壳][凸包的宽度]

    题目链接:https://codeforces.com/gym/101606/problem/B 题解: 对于给出的 $n$ 个点,先求这些点的凸包,然后用旋转卡壳求出凸包的宽度(Width (min ...

  2. [codeforces/gym/101350/L]维护“凸包”

    题目链接:http://codeforces.com/gym/101350/problems 给定n个墙,每个墙有一个高度,要支持动态修改墙的高度和查询这个“容器”能盛多少水. (队友)观察发现,能盛 ...

  3. poj1375Intervals(点到圆的切线)

    链接 貌似这样的叫解析几何 重点如何求得过光源到圆的切线与地板的交点x坐标,可以通过角度及距离来算,如图, 根据距离和半径可以求得角度a.b.r,自然也可以求得d1,d2. 至于方向问题,在求r得时候 ...

  4. UVA 11168 - Airport - [凸包基础题]

    题目链接:https://cn.vjudge.net/problem/UVA-11168 题意: 给出平面上的n个点,求一条直线,使得所有的点在该直线的同一侧(可以在该直线上),并且所有点到该直线的距 ...

  5. 【计算几何】【分类讨论】Gym - 101173C - Convex Contour

    注意等边三角形的上顶点是卡不到边界上的. 于是整个凸包分成三部分:左边的连续的三角形.中间的.右边的连续的三角形. 套个计算几何板子求个三角形顶点到圆的切线.三角形顶点到正方形左上角距离啥的就行了,分 ...

  6. HDU 4667 Building Fence(求凸包的周长)

    A - Building Fence Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u ...

  7. 【BZOJ3203】[Sdoi2013]保护出题人 二分+凸包

    [BZOJ3203][Sdoi2013]保护出题人 Description Input 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离.接下来n行每行两个空格隔开的正整数,第i + ...

  8. hdu4266(三维凸包模板题)

    /*给出三维空间中的n个顶点,求解由这n个顶点构成的凸包表面的多边形个数. 增量法求解:首先任选4个点形成的一个四面体,然后每次新加一个点,分两种情况: 1> 在凸包内,则可以跳过 2> ...

  9. opencv::凸包-Convex Hull

    概念介绍 什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部. 正式定义:包含点集合S中所有点的最小凸多边形称为凸包 Graham扫描算法 首先选 ...

随机推荐

  1. Python制作AI贪吃蛇

    前提:本文实现AI贪吃蛇自行对战,加上人机对战,文章末尾附上源代码以及各位大佬的链接,还有一些实现步骤,读者可再次基础上自行添加电脑VS电脑和玩家VS玩家(其实把人机对战写完,这2个都没什么了,思路都 ...

  2. Selenium(基于JAVA语言)-》在eclipse上运行web项目在Mac系统上启动时提示nodename nor servname provided解决办法

    最近使用eclipse进行自动化测试时,遇到一种情况,无法调起浏览器,且有报错,如下: org.openqa.selenium.WebDriverException: failed to lookup ...

  3. A_Pancers团队作业4—基于原型的团队项目需求调研与分析

    任务1:实施团队项目软件用户调研活动. (1)用户调研对象:我们的项目软件是基于安卓系统的音乐播放器,以设计出操作简单的音乐播放器为目的,所以本次用户调研的对象主要以身边的老人为主,对他们听音乐,听戏 ...

  4. SQL查询日期格式化

    MARK一下 方便以后自己查阅 举例如下: getdate() 可以替换成日期类型字段 select Convert(varchar(10),getdate(),120) 2006-05-12sele ...

  5. SQL SERVER 事务的使用(tran)

    sql server事务的使用是为了确保数据的一致性. 通常写法 begin tran --sql 语句1 --sql 语句2 --sql 语句3 commit tran 上面写法存在隐患,当操作(增 ...

  6. node 安装 vue-cli 创建vue项目

    $ npm install -g vue-cli $ vue init webpack-simple my-project $ cd my-project $ npm install $ npm ru ...

  7. 那些令人迷惑的名词:切图/H5/XML/REST

    长时间以来对一些名词感到很困惑,不明白其具体指什么,在此记录一下. 一.切图 1.1 原先理解 从字面意思理解,切图是指将一张大的图切割成很多张小的图片.最早(视频教程网或者我要自学网)看到的视频也是 ...

  8. sharing-jdbc实现读写分离及分库分表

    需求: 分库:按业务线business_id将不同业务线的订单存储在不同的数据库上: 分表:按user_id字段将不同用户的订单存储在不同的表上,为方便直接用非分片字段order_id查询,可使用基因 ...

  9. Oracle单机Rman笔记[0]---环境准备

    A. 安装操作系统rhel6.6,关闭防火墙,修改网卡配置IP(略)PS:1.默认分区选项(第二项,默认为LVM),然后进行调整2.安装类型选择“桌面”3.安装后 分配IP.调整防火墙.测试SSH B ...

  10. 微服务解决框架--SpringCloud