harmakik
Solution
对于原树一个节点\(x\):
\(f_x(h)\)表示,\(x\)作为一个深度为\(h\)的点时,\(x\)及其子树的安排方案有多少(不考虑\(x\)具体在深度为\(h\)的哪个点)
\(F_x(h)\)表示,对于一个固定的深度为\(h\)的节点\(y\),\(x\)在\(y\)或其子树中,\(x\)及其子树的安排方案有多少。
则有关系:
\[
F_x(h)=\sum_{i\ge h}f_x(i)*2^{i-h}
\]
对于叶子:
\[
F_x(h)=[h\le h_x]2^{h_x-h}
\]
已知二者都可以表示成这些形式
\[
f_x(h)=\sum_{i\geq 0}c_i*2^{-ih}\\
F_x(h)=\sum_{i\geq 0}c_i*2^{-ih}
\]
对于叶子\(x\),赋值后直接回溯:
\[
c_1=2^{h_x}
\]
依照60分DP,可以推出由儿子到自己的转移(两个\(c\)分别是两个\(F\)的\(c\),\(c'\)是转移后的\(f_x\)的\(c\)):
\[
\begin{aligned}
f_x(h)&=F_l(h+1)F_r(h+1)\\
&=(\sum_{i\geq 0}c_i2^{-i(h+1)})(\sum_{j\geq 0}c_j2^{-j(h+1)})\\
&=(\sum_{i\geq 0}\frac{c_i}{2^i}2^{-ih})(\sum_{j\geq 0}\frac{c_j}{2^j}2^{-jh})\\
&=\sum_{i\ge0}{c'}_i2^{-ih}\\
\end{aligned}
\]
当然,也可以在卷积完之后每个\(c_i\)除去\(2^i\)
观察到这个卷积,再考虑边界,\(c\)的下标为\(0...siz[x]\),\(siz[x]\)为\(x\)子树中叶子数。暴力卷积,用树上背包思路分析,这一步的复杂度是全局\(\mathcal O(n^2)\)的
得到自己的\(f\)后,由于父亲要使用自己的\(F\),所以根据定义式由\(f\)推出\(F\):
\[
\begin{aligned}
F_x(h)&=\sum_{h \le i<maxh}f_x(i)*2^{i-h}\\
&=\sum_{h \le i<maxh}\sum_{j\ge 0}c_j*2^{i(1-j)-h}\\
&=\sum_{j\ge0}\frac{c_j}{2^h}\sum_{h \le i<maxh}(2^{(1-j)})^i\\
&=\sum_{j\ge0}\frac{c_j}{2^h}\frac{(2^{1-j})^{maxh}-(2^{1-j})^{h}}{(2^{1-j})-1}\\
&=\sum_{j\ge 0}c_j(\frac{2^{(1-j)maxh}}{2^{1-j}-1}2^{-h}-\frac{1}{2^{1-j}-1}2^{-jh})
\end{aligned}
\]
答案即\(F_1(0)\),\(\sum c_i\)
PS:\(c_0\)没用
harmakik的更多相关文章
随机推荐
- 通用漏洞评估方法CVSS3.0简表
CVSS3.0计算分值共有三种维度: 1. 基础度量. 分为 可利用性 及 影响度 两个子项,是漏洞评估的静态分值. 2. 时间度量. 基础维度之上结合受时间影响的三个动态分值,进而评估该漏洞的动态分 ...
- 面试4——java进程和线程相关知识
1.线程和进程的概念.并行和并发的概念
- Python高阶函数--map
map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把list 的每个元素依次作用在函数 f 上,得到一个新的 list 并返回. 例如,对于lis ...
- oracle系统化学习笔记
CentOS 4.x上安装Oracle 9i(3讲) oracle9i非常成熟,刚学主要是学9i比较经典 学会安装9i具有现实意义,先学完9i再学11g等比较好 1.安装centos 2.安装orac ...
- vs2015安装及初步试用
Vs2015一直都听说好用,便捷.之前用vc++6.0,总感觉界面很灰,让人编程兴趣不高,恰巧借此机会,安装一下vs2015,从编译器上体验下编程的舒心,方便.希望我不会变得太懒... 首先,我下的是 ...
- linux内核期中总结
20135132陈雨鑫 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ...
- 读书笔记(chapter7)
第七章 链接 链接是将各种代码和数据部分收集起来并且组合成为一个单一文件的过程.1.这个文件可被加载到存储器并执行:2.也可以执行于加载时,也就是在程序被加载器加载到存储器并执行:3.甚至可以执行于运 ...
- [ERROR] Failed to execute goal org.codehaus.mojo:gwt-maven-plugin:2.5.0-rc1:compile (default) on project zeus-web: Command 解决
在编译maven项目,打包maven packeage -Dmaven.test.skip=TRUE时,报错“[ERROR] Failed to execute goal org.codehaus.m ...
- 美团外卖app可行性分析
美团外卖app可行性分析 1 引言 1.1编写目的 年轻人追求时尚,快捷,因此外卖行业拥有广阔的消费群体:团购的兴起,也促进了人们的消费欲望,人们继续一个外卖平台,来满足他们的欲望.O2o模式的日渐完 ...
- Practise 5.2测试与封装(黑白盒
本次测试与封装(黑白盒). 结伴队友:叶子鹏,他的博客地址:http://www.cnblogs.com/kazehanaai/ 由于我们的程序从一开始就一起弄的,所以测试的话不好换伙伴,所以我的伙伴 ...