CodeForces 1110F Nearest Leaf | 线段树/换根
我……又诈尸了……
代码几乎都不会写了,打场CF居然上分啦,开心!(虽然还是比不过列表里的各路神仙)
题目链接
题目描述
一棵\(n\)个点的有根树,规定一种dfs序(规则:编号小的点优先dfs),\(m\)次询问一个点\(u\)和一个区间\([l, r]\),求dfs序在这个区间内的叶子中,到\(u\)最小的距离。
\(n, m \le 500000\)
题解
这题……很简单……
题面一上来给个什么欧拉遍历定义……我吓得比赛中没看这题……(实际上码量对于代码几乎都不会敲的退役选手来说,不是非常友好 = = 当时做了可能也会写跪)
用线段树维护所有叶子到“当前点”(一开始是\(1\)号节点)的距离\(dis\)。
一开始以\(1\)号节点为“当前点”,dfs求距离,建树。这样\(u = 1\)的询问就可以解决了。
怎么解决其他\(u\)的询问呢?考虑移动“当前点”时,线段树会如何变化。
因为是DFS序,所以每棵子树在dfs序上都挨在一起。当“当前点”从父亲\(u\)移到儿子\(v\)\(w(u, v)\)时,子树\(v\)内所有点的\(dis\)都减去了\(w(u, v)\)(<u, v>这条边的长度),而子树\(v\)外的所有点\(dis\)都加上了\(w(u, v)\)。只需在线段树上区间修改即可。
显然,先把询问都读进来,离线处理非常优秀。空间允许的话似乎也可以主席树?(没试过 = =)
代码
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cassert>
#include <vector>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 500005;
const ll INF = 0x3f3f3f3f3f3f3f3f;
int n, m;
int ncnt, dfn[N], idx[N], ed[N];
int lcnt, llst[N], lnum[N], prel[N], nxtl[N];
ll w[N], dis[N], data[4*N], lazy[4*N], ans[N];
vector <int> son[N];
struct Query {
int id, u, l, r;
bool operator < (const Query &b) const {
return dfn[u] < dfn[b.u];
}
} qry[N];
int qpos = 1;
void dfs1(int u, int pre){
dfn[u] = ++ncnt;
idx[ncnt] = u;
for(auto v : son[u]){
dis[v] = dis[u] + w[v];
dfs1(v, u);
}
if(u != 1 && ncnt == dfn[u]){
lnum[u] = ++lcnt;
llst[lcnt] = u;
}
ed[u] = ncnt;
}
void modify(int k, ll x){
data[k] += x, lazy[k] += x;
}
void pushdown(int k){
if(!lazy[k]) return;
modify(k << 1, lazy[k]);
modify(k << 1 | 1, lazy[k]);
lazy[k] = 0;
}
void change(int k, int l, int r, int ql, int qr, ll x){
if(ql <= l && qr >= r) return void(modify(k, x));
pushdown(k);
int mid = (l + r) >> 1;
if(ql <= mid) change(k << 1, l, mid, ql, qr, x);
if(qr > mid) change(k << 1 | 1, mid + 1, r, ql, qr, x);
data[k] = min(data[k << 1], data[k << 1 | 1]);
}
ll query(int k, int l, int r, int ql, int qr){
if(ql <= l && qr >= r) return data[k];
pushdown(k);
int mid = (l + r) >> 1;
ll ret = INF;
if(ql <= mid) ret = query(k << 1, l, mid, ql, qr);
if(qr > mid) ret = min(ret, query(k << 1 | 1, mid + 1, r, ql, qr));
return ret;
}
void build_tree(int k, int l, int r){
if(l == r) return void(data[k] = dis[llst[l]]);
int mid = (l + r) >> 1;
build_tree(k << 1, l, mid);
build_tree(k << 1 | 1, mid + 1, r);
data[k] = min(data[k << 1], data[k << 1 | 1]);
}
void dfs2(int u, int pre){
while(qry[qpos].u == u){
ans[qry[qpos].id] = query(1, 1, lcnt, qry[qpos].l, qry[qpos].r);
qpos++;
}
for(auto v : son[u]){
change(1, 1, lcnt, 1, lcnt, w[v]);
change(1, 1, lcnt, nxtl[dfn[v]], prel[ed[v]], -2 * w[v]);
dfs2(v, u);
change(1, 1, lcnt, 1, lcnt, -w[v]);
change(1, 1, lcnt, nxtl[dfn[v]], prel[ed[v]], 2 * w[v]);
}
}
int main(){
read(n), read(m);
for(int i = 2, u; i <= n; i++){
read(u), read(w[i]);
son[u].push_back(i);
}
dfs1(1, 0);
for(int i = 1, t = 1; i <= n; i++){
if(lnum[idx[i]]) t = lnum[idx[i]];
prel[i] = t;
}
for(int i = n, t = lcnt; i; i--){
if(lnum[idx[i]]) t = lnum[idx[i]];
nxtl[i] = t;
}
for(int i = 1; i <= m; i++){
qry[i].id = i, read(qry[i].u), read(qry[i].l), read(qry[i].r);
qry[i].l = nxtl[qry[i].l], qry[i].r = prel[qry[i].r];
}
sort(qry + 1, qry + m + 1);
build_tree(1, 1, lcnt);
dfs2(1, 0);
for(int i = 1; i <= m; i++)
write(ans[i]), enter;
return 0;
}
CodeForces 1110F Nearest Leaf | 线段树/换根的更多相关文章
- Codeforces.1110F.Nearest Leaf(线段树)
题目链接 \(dls\)讲过这道题,所以这不是线段树裸题吗,这场没打气气气气气=-= 现在是写着玩=v= \(Description\) 给定一棵\(n\)个点的树.\(q\)次询问,每次询问给定\( ...
- Codeforces 1110F(DFS序+线段树)
题面 传送门 分析 next_id = 1 id = array of length n filled with -1 visited = array of length n filled with ...
- codeforces#1187E. Tree Painting(树换根)
题目链接: http://codeforces.com/contest/1187/problem/E 题意: 给出一颗树,找到一个根节点,使所有节点的子节点数之和最大 数据范围: $2 \le n \ ...
- CodeForces–833B--The Bakery(线段树&&DP)
B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Buses and People CodeForces 160E 三维偏序+线段树
Buses and People CodeForces 160E 三维偏序+线段树 题意 给定 N 个三元组 (a,b,c),现有 M 个询问,每个询问给定一个三元组 (a',b',c'),求满足 a ...
- CodeForces 877E DFS序+线段树
CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- [Codeforces 1199D]Welfare State(线段树)
[Codeforces 1199D]Welfare State(线段树) 题面 给出一个长度为n的序列,有q次操作,操作有2种 1.单点修改,把\(a_x\)修改成y 2.区间修改,把序列中值< ...
- [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)
[Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...
随机推荐
- Kafka基础系列第1讲:Kafka的诞生背景及应用
Kafka 是由 LinkedIn 开发的一个分布式的消息系统,使用 Scala 编写,它以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如 Cloudera.Apache Sto ...
- C#_获取路径
一.获取当前文件的路径 1. System.Diagnostics.Process.GetCurrentProcess().MainModule.FileName 获取模块的完整路径,包括文件名. ...
- su: 无法设置用户ID: 资源暂时不可用
登录非root用户,报错如下:[root@test ~]# su - appsu: 无法设置用户ID: 资源暂时不可用 或者用ssh 命令连接服务器之后,如果一段时间不操作,再次进入 Terminal ...
- nginx下目录浏览及其验证功能、版本隐藏等配置记录
工作中常常有写不能有网页下载东西的需求,在Apache下搭建完成后直接导入文件即可达到下载/显示文件的效果;而Nginx的目录列表功能默认是关闭的,如果需要打开Nginx的目录列表功能,需要手动配置, ...
- 软件工程M1/M2总结及阅读作业总结
一.软件工程M1/M2总结 写下这篇总结的时候,我们的软件项目尚未完工.虽然尝试申请了延期答辩,但最终未能成功.这意味着,我们的项目能否正常发布已经处于了一个微妙的状态.可能可以,也可能不可以.只能尽 ...
- 剑指offer:树的子结构
题目描述: 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 解题思路: 同样考虑用递归来做. 利用两个递归函数,一个用于判断两棵树树否相等,另一个递归取A的 ...
- python2 与 python3 实现共存
已有配置 Anaconda2+python2.7 方案一:直接安装官网原生python3.6 1.修改根目录下python.exe ->python3.exe pythonw.exe - ...
- pandas获取groupby分组里最大值所在的行,获取第一个等操作
pandas获取groupby分组里最大值所在的行 10/May 2016 python pandas pandas获取groupby分组里最大值所在的行 如下面这个DataFrame,按照Mt分组, ...
- 通过JDOM实现XML与String的相互转换
利用JDOM实现XML与String之间的相互转换: package com.util.xml; import java.io.ByteArrayOutputStream; import java.i ...
- ESXi 更新补丁 暂时未测试 等有时间尝试一下.
下载地址: https://my.vmware.com/group/vmware/patch 使用操作图: 选择相应的zip包下载即可 更新方式: 命令方式升级ESXi主机补丁包 1.进入VMware ...