题意

给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求

\[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist}(i, j)^k
\]

\(n ≤ 50000, k ≤ 150\)

题解

先划划那个 \(S(i)\) 的式子

我们需要知道一个化 \(x^n(n \ge 0)\) 的东西qwq

\[\displaystyle x^n=\sum_{k=0}^{n}\begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline k}=\sum _{k=0}^{n}(-1)^k \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\overline k}
\]

这个式子十分的有用,可以转化很多幂指数的东西为斯特林数。

\[\displaystyle S(i)=\sum _{j=1}^{n}\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix} \mathrm{dist}(i,j)^{\underline l}
\]

然后换个位置

\[\displaystyle S(i)=\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix}\sum _{j=1}^{n} \mathrm{dist}(i,j)^{\underline l}
\]

然后用一下组合数的一个定义式子:

\[\displaystyle \binom n k = \frac{n!}{(n-k)!k!}=\frac{n^{\underline k}}{k!}
\]

\[\therefore \displaystyle n^{\underline k}=\binom n k k!
\]

这也可以导出下降幂了

\[\displaystyle S(i)=\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix} l!\sum _{j=1}^{n} \binom {\mathrm{dist}(i,j)} l
\]

前面那一部分显然是稳定不变的,我们就可以去维护第二部分啦

令 $$\displaystyle dp[i][l]=\sum _{j=1}^{n} \binom {\mathrm{dist}(i,j)} l$$

由于是组合数我们就可以直接套用它的一个递推式来转移了(因为转移的时候,所有 \(\mathrm{dist}(i,j)\) 同增减 \(1\) )

\[\displaystyle \binom n k = \binom {n-1} {k} + \binom {n-1} {k-1}
\]

同样的,就有 \(dp[i][l]=dp[j][l]+dp[j][l-1]\) 此处 \(j\) 是 \(i\) 的一个儿子。(这个递推式用来转移真的是巧妙啊qwq)

然后我们要算两个 \(dp\) 值,一个 \(f_{i,l}\) 统计子树的,一个 \(g_{i,l}\) 统计子树外的。

统计子树外的时候,要先算父亲那过来的贡献,然后再算兄弟的贡献。

算兄弟的贡献可以用父亲贡献减掉自己的贡献(见代码中分步写的 \(g_{i,j}\) 的转移) 而且要先转移,再遍历

所以最后 \(O(nk)\) 个状态, \(O(1)\) 的转移,总复杂度就是 \(\Theta(nk)\) .

那个解压输入直接拷贝了 Hany01 大佬的 qwq不会写

代码

/**************************************************************
Problem: 2159
User: zjp_shadow
Language: C++
Result: Accepted
Time:4156 ms
Memory:67680 kb
****************************************************************/ #include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("2159.in", "r", stdin);
freopen ("2159.out", "w", stdout);
#endif
} const int Mod = 10007, N = 50010; vector<int> G[N]; int n, k, S[160][160];
int fac[160]; void Init(int maxn) {
S[0][0] = 1; For (i, 1, maxn) { S[i][1] = 1; For (j, 1, i) S[i][j] = (j * S[i - 1][j] % Mod + S[i - 1][j - 1]) % Mod; }
fac[0] = fac[1] = 1; For (i, 2, maxn) fac[i] = fac[i - 1] * i % Mod;
} int f[N][160], sz[N]; void Dfs1(int u, int fa) {
f[u][0] = 1; sz[u] = 1;
For (i, 0, G[u].size() - 1) {
int v = G[u][i]; if (v == fa) continue ;
Dfs1(v, u); sz[u] += sz[v];
(f[u][0] += f[v][0]) %= Mod;
For (j, 1, k) (f[u][j] += f[v][j] + f[v][j - 1]) %= Mod;
}
} int g[N][160]; void Dfs2(int u, int fa) {
g[u][0] = (n - sz[u]) % Mod;
if (fa) {
For (i, 1, k) {
g[u][i] = g[fa][i] + g[fa][i - 1];
g[u][i] += f[fa][i] - (f[u][i] + f[u][i - 1]);
g[u][i] += f[fa][i - 1] - (f[u][i - 1] + (i > 1 ? f[u][i - 2] : 0));
g[u][i] = (g[u][i] % Mod + Mod) % Mod;
}
}
For (i, 0, G[u].size() - 1) { int v = G[u][i]; if (v == fa) continue ; Dfs2(v, u); }
} int ans[N]; inline void Input_Umcompress()
{
register int l, now, a, b, q, tmp, u, v;
n = read(), k = read(), l = read(), now = read(), a = read(), b = read(), q = read();
For(i, 1, n - 1)
now = (now * a + b) % q, tmp = i < l ? i : l,
u = i - now % tmp, v = i + 1, G[u].push_back(v), G[v].push_back(u);
} int main () {
File(); Init(150);
Input_Umcompress();
/*n = read(); k = read();
For (i, 1, n - 1) {
int u = read(), v = read();
G[u].push_back(v);
G[v].push_back(u);
}*/ Dfs1(1, 0); Dfs2(1, 0); For (i, 1, n) {
For (l, 0, k)
(ans[i] += S[k][l] * fac[l] % Mod * (f[i][l] + g[i][l]) % Mod) %= Mod;
printf ("%d\n", ans[i]);
} return 0;
}

BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)的更多相关文章

  1. 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)

    传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...

  2. BZOJ.2159.Crash的文明世界(斯特林数 树形DP)

    BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...

  3. bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...

  4. bzoj 2159: Crash 的文明世界

    Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 480  Solved: 234[Submit][Status][Discuss] Descripti ...

  5. BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数

    题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...

  6. 【hdu4045】Machine scheduling(dp+第二类斯特林数)

    传送门 题意: 从\(n\)个人中选\(r\)个出来,但每两个人的标号不能少于\(k\). 再将\(r\)个人分为不超过\(m\)个集合. 问有多少种方案. 思路: 直接\(dp\)预处理出从\(n\ ...

  7. bzoj 2159 Crash 的文明世界 & hdu 4625 JZPTREE —— 第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i ...

  8. [bzoj 2159]Crash的文明世界

    今天看到一个鬼题 心情好的时候写 [题意]求树上所有点对距离的k次方和,所有边权为1 大爷方的题解:http://tonyfang.is-programmer.com/posts/204972.htm ...

  9. bzoj 2159 - Crash 的 文明世界

    Description 给定一棵\(n\le 10^5\)的树, 和\(k\le 150\) 求每个点\(x\)的\[S(x) = \sum_{y=1}^n dis(x, y) ^ k\] Analy ...

随机推荐

  1. Canvas绘图优化之使用位图--基于createjs库

    在地图上实时绘制大量(万级别)图形,实时绘制的原因是因为各个图形形状不同,图形要按照后端传送的参数来绘制. 用canvas绘制图形比较方便,javascript的api接口也比较简单.现在也有很多的j ...

  2. mysql 添加字段,未响应

    ddl是要请求锁整个表的,肯定是这个表上有DML事务了,也就是有其它会话在删除.修改.插入这个表并且未提交

  3. EF性能优化-有人说EF性能低,我想说:EF确实不如ADO.NET

    十年河东,十年河西,莫欺少年穷. EF就如同那个少年,ADO.NET则是一位壮年.毕竟ADO.NET出生在EF之前,而EF所走的路属于应用ADO.NET. 也就是说:你所写的LINQ查询,最后还是要转 ...

  4. 51Nod 1443 路径和树

    还是一道很简单的基础题,就是一个最短路径树的类型题目 我们首先可以发现这棵树必定满足从1出发到其它点的距离都是原图中的最短路 换句话说,这棵树上的每一条边都是原图从1出发到其它点的最短路上的边 那么直 ...

  5. 1.RapidIO协议概述

    转自https://www.cnblogs.com/liujinggang/p/9925859.html 一.RapidIO背景介绍 RapidIO是由Motorola和Mercury等公司率先倡导的 ...

  6. FreeRTOS 任务与调度器(2)

    在上一篇我们介绍了FreeRTOS任务的一些基本操作和功能,今天我们会介绍一个很好很强大的功能——任务通知 任务通知可以在不同任务之间传递信息,它可以取代二值信号量.计数信号量.事件标志组.深度为1的 ...

  7. 阿里云centos内docker的搭建

    由于docker在17之后的版本分成了docker EE(企业版)和docker CE(社区版),那么我们在安装的时候就要开始纠结的选择了,这里我推荐了docker CE(社区版). 实际上这两个版本 ...

  8. Beta版测试报告

    Beta版测试报告 测试中发现的Bug: Version 2.0 Bug List 1. 在动态监测界面,若随便点击“开始”.“关闭”.“结束”.红叉,会出现不定式崩溃现象. 2. 处理空数据时可能会 ...

  9. 2-Twenty Fourth Scrum Meeting-20151230

    前言 因为服务器关闭,我们的开发项目也遭遇停滞一个星期.与网站开发负责人员协商之后,29号开放服务器.我们的项目也能够继续下去.比规定的开发时间(截止为2015/12/29)推迟. 事项安排 1.开发 ...

  10. Linux内核分析作业 NO.8 完结撒花~~~

    进程的切换和系统的一般执行过程 于佳心  原创作品转载请注明出处  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-10000 ...