在训练深度学习模型的时候,通常将数据集切分为训练集和验证集.Keras提供了两种评估模型性能的方法:

  • 使用自动切分的验证集
  • 使用手动切分的验证集

一.自动切分

在Keras中,可以从数据集中切分出一部分作为验证集,并且在每次迭代(epoch)时在验证集中评估模型的性能.

具体地,调用model.fit()训练模型时,可通过validation_split参数来指定从数据集中切分出验证集的比例.

# MLP with automatic validation set
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10)

validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。

注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。 

二.手动切分

Keras允许在训练模型的时候手动指定验证集.

例如,用sklearn库中的train_test_split()函数将数据集进行切分,然后在kerasmodel.fit()的时候通过validation_data参数指定前面切分出来的验证集.

# MLP with manual validation set
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# split into 67% for train and 33% for test
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=seed)
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=150, batch_size=10)

三.K折交叉验证(k-fold cross validation)

将数据集分成k份,每一轮用其中(k-1)份做训练而剩余1份做验证,以这种方式执行k轮,得到k个模型.将k次的性能取平均,作为该算法的整体性能.k一般取值为5或者10.

  • 优点:能比较鲁棒性地评估模型在未知数据上的性能.
  • 缺点:计算复杂度较大.因此,在数据集较大,模型复杂度较高,或者计算资源不是很充沛的情况下,可能不适用,尤其是在训练深度学习模型的时候.

sklearn.model_selection提供了KFold以及RepeatedKFold, LeaveOneOut, LeavePOut, ShuffleSplit, StratifiedKFold, GroupKFold, TimeSeriesSplit等变体.

下面的例子中用的StratifiedKFold采用的是分层抽样,它保证各类别的样本在切割后每一份小数据集中的比例都与原数据集中的比例相同.

# MLP for Pima Indians Dataset with 10-fold cross validation
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import StratifiedKFold
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# define 10-fold cross validation test harness
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
cvscores = []
for train, test in kfold.split(X, Y):
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X[train], Y[train], epochs=150, batch_size=10, verbose=0)
# evaluate the model
scores = model.evaluate(X[test], Y[test], verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
cvscores.append(scores[1] * 100)
print("%.2f%% (+/- %.2f%%)" % (numpy.mean(cvscores), numpy.std(cvscores)))

参考:

Evaluate the Performance Of Deep Learning Models in Keras

3.1. Cross-validation: evaluating estimator performance — scikit-learn 0.19.1 documentation

sklearn中的交叉验证与参数选择

基于sklearn和keras的数据切分与交叉验证的更多相关文章

  1. 机器学习 - 案例 - 样本不均衡数据分析 - 信用卡诈骗 ( 标准化处理, 数据不均处理, 交叉验证, 评估, Recall值, 混淆矩阵, 阈值 )

    案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表 ...

  2. 莫烦sklearn学习自修第七天【交叉验证】

    1. 什么是交叉验证 所谓交叉验证指的是将样本分为两组,一组为训练样本,一组为测试样本:对于哪些数据分为训练样本,哪些数据分为测试样本,进行多次拆分,每次将整个样本进行不同的拆分,对这些不同的拆分每个 ...

  3. 基于sklearn的分类器实战

    已迁移到我新博客,阅读体验更佳基于sklearn的分类器实战 完整代码实现见github:click me 一.实验说明 1.1 任务描述 1.2 数据说明 一共有十个数据集,数据集中的数据属性有全部 ...

  4. 客户流失?来看看大厂如何基于spark+机器学习构建千万数据规模上的用户留存模型 ⛵

    作者:韩信子@ShowMeAI 大数据技术 ◉ 技能提升系列:https://www.showmeai.tech/tutorials/84 行业名企应用系列:https://www.showmeai. ...

  5. MySQL数据切分的相关概念和原理详解

    对于数据切分,我们可能还不是很熟悉,但是它对于MySQL数据库来说也是相当重要的一门技术,本文我们就详细介绍一下MySQL数据库的数据切分的相关知识,接下来就让我们一起来了解一下这部分内容. 什么是数 ...

  6. MySql(十四):MySql架构设计——可扩展性设计之数据切分

    一.前言 通过 MySQL Replication 功能所实现的扩展总是会受到数据库大小的限制,一旦数据库过于庞大,尤其是当写入过于频繁,很难由一台主机支撑的时候,我们还是会面临到扩展瓶颈.这时候,我 ...

  7. 机器学习入门-交叉验证选择参数(数据切分)train_test_split(under_x, under_y, test_size, random_state), (交叉验证的数据切分)KFold, recall_score(召回率)

    1. train_test_split(under_x, under_y, test_size=0.3, random_state=0)  # under_x, under_y 表示输入数据, tes ...

  8. MySQL性能调优与架构设计——第 14 章 可扩展性设计之数据切分

    第 14 章 可扩展性设计之数据切分 前言 通过 MySQL Replication 功能所实现的扩展总是会受到数据库大小的限制,一旦数据库过于庞大,尤其是当写入过于频繁,很难由一台主机支撑的时候,我 ...

  9. 如何基于Go搭建一个大数据平台

    如何基于Go搭建一个大数据平台 - Go中国 - CSDN博客 https://blog.csdn.net/ra681t58cjxsgckj31/article/details/78333775 01 ...

随机推荐

  1. jupyter notebook新用法

    输入单词以后按下tab键以后 出现提示 a是个矩阵或者数组,a.flatten()就是把a降到一维,默认是按横的方向降>>> a = np.array([[1,2], [3,4]]) ...

  2. 后端解决 微信H5支付 商户参数格式错误 方法

    问题如图: 后端解决方法: 在返回mweb_url 后不要直接访问这个链接,在当前页面用js window.location.href = mweb_url 这样跳转就可以了

  3. Hopfield神经网络

    神经网络分类 多层神经网络:模式识别 相互连接型网络:通过联想记忆去除数据中的噪声 1982年提出的Hopfield神经网络是最典型的相互连结型网络. 联想记忆 当输入模式为某种状态时,输出端要给出与 ...

  4. .Net 读取配置文件 xml

    直接解析XML文件 1.System.Xml.Linq命名空间下提供可以使用linq查询的类,使用linq to xml读取也很方便. 2.还可以使用System.Xml.Serialization类 ...

  5. luoguP1850 换教室

    luoguP1850 换教室 链接 https://www.luogu.org/problemnew/show/P1850 思路 状态很显然就是f[n][k][0/1] 前i次,用了k次机会,当前是在 ...

  6. mac系统删除.DS_Store文件

    查找某目录下某类文件 find . -name ".DS_Store" -type f -print # find: 主命令 # . : 当前目录下(可变) # -name: 通过 ...

  7. npm使用国内镜像的方法

    一.通过命令配置1. 命令 npm config set registry https://registry.npm.taobao.org 2. 验证命令 npm config get registr ...

  8. HashMap 和 HashTable差别

    代码版本 JDK每一版本都在改进.本文讨论的HashMap和HashTable基于JDK 1.7.0_67.源码见这里 1. 时间 HashTable产生于JDK 1.1,而HashMap产生于JDK ...

  9. 整合Druid数据源

    pom依赖: <!--引入druid数据源--> <!-- https://mvnrepository.com/artifact/com.alibaba/druid --> & ...

  10. Codeforces Beta Round #94 (Div. 1 Only)B. String sam

    题意:给你一个字符串,找第k大的子字符串.(考虑相同的字符串) 题解:建sam,先预处理出每个节点的出现次数,然后处理出每个节点下面的出现次数,然后在dfs时判断一下往哪边走即可,注意一下num会爆i ...