亿级 ELK 日志平台构建部署实践

本篇主要讲工作中的真实经历,我们怎么打造亿级日志平台,同时手把手教大家建立起这样一套亿级 ELK 系统。日志平台具体发展历程可以参考上篇 「从 ELK 到 EFK 演进」
废话不多说,老司机们座好了,我们准备发车了~~~
整体架构

整体架构主要分为 4 个模块,分别提供不同的功能
Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,也会是 ELK Stack 在 Agent 的第一选择。
Kafka: 数据缓冲队列。作为消息队列解耦了处理过程,同时提高了可扩展性。具有峰值处理能力,使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
Logstash :数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。
Elasticsearch :分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。
Kibana :可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。
版本说明
Filebeat: 6.2.4
Kafka: 2.11-1
Logstash: 6.2.4
Elasticsearch: 6.2.4
Kibana: 6.2.4
相应的版本最好下载对应的插件
具体实践
我们就以比较常见的 Nginx 日志来举例说明下,日志内容是 JSON 格式
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
Filebeat
为什么用 Filebeat ,而不用原来的 Logstash 呢?
原因很简单,资源消耗比较大。
由于 Logstash 是跑在 JVM 上面,资源消耗比较大,后来作者用 GO 写了一个功能较少但是资源消耗也小的轻量级的 Agent 叫 Logstash-forwarder。
后来作者加入 elastic.co 公司, Logstash-forwarder 的开发工作给公司内部 GO 团队来搞,最后命名为 Filebeat。
Filebeat 需要部署在每台应用服务器上,可以通过 Salt 来推送并安装配置。
下载
$ wget https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-6.2.4-darwin-x86_64.tar.gz
解压
tar -zxvf filebeat-6.2.4-darwin-x86_64.tar.gz
mv filebeat-6.2.4-darwin-x86_64 filebeat
cd filebeat
修改配置
修改 Filebeat 配置,支持收集本地目录日志,并输出日志到 Kafka 集群中
$ vim fileat.yml
filebeat.prospectors:
- input_type: log
paths:
- /opt/logs/server/nginx.log
json.keys_under_root: true
json.add_error_key: true
json.message_key: log
output.kafka:
hosts: ["192.168.0.1:9092","192.168.0.2:9092","192.168.0.3:9092"]
topic: 'nginx'
Filebeat 6.0 之后一些配置参数变动比较大,比如 document_type 就不支持,需要用 fields 来代替等等。
启动
$ ./filebeat -e -c filebeat.yml
Kafka
生产环境中 Kafka 集群中节点数量建议为(2N + 1 )个,这边就以 3 个节点举例
下载
直接到官网下载 Kafka
$ wget http://mirror.bit.edu.cn/apache/kafka/1.0.0/kafka_2.11-1.0.0.tgz
解压
tar -zxvf kafka_2.11-1.0.0.tgz
mv kafka_2.11-1.0.0 kafka
cd kafka
修改 Zookeeper 配置
修改 Zookeeper 配置,搭建 Zookeeper 集群,数量 ( 2N + 1 ) 个
ZK 集群建议采用 Kafka 自带,减少网络相关的因素干扰
$ vim zookeeper.properties
tickTime=2000
dataDir=/opt/zookeeper
clientPort=2181
maxClientCnxns=50
initLimit=10
syncLimit=5
server.1=192.168.0.1:2888:3888
server.2=192.168.0.2:2888:3888
server.3=192.168.0.3:2888:3888
Zookeeper data 目录下面添加 myid 文件,内容为代表 Zooekeeper 节点 id (1,2,3),并保证不重复
$ vim /opt/zookeeper/myid
1
启动 Zookeeper 节点
分别启动 3 台 Zookeeper 节点,保证集群的高可用
$ ./zookeeper-server-start.sh -daemon ./config/zookeeper.properties
修改 Kafka 配置
kafka 集群这边搭建为 3 台,可以逐个修改 Kafka 配置,需要注意其中 broker.id 分别 (1,2,3)
$ vim ./config/server.properties
broker.id=1
port=9092
host.name=192.168.0.1
num.replica.fetchers=1
log.dirs=/opt/kafka_logs
num.partitions=3
zookeeper.connect=192.168.0.1:2181,192.168.0.2:2181,192.168.0.3:2181
zookeeper.connection.timeout.ms=6000
zookeeper.sync.time.ms=2000
num.io.threads=8
num.network.threads=8
queued.max.requests=16
fetch.purgatory.purge.interval.requests=100
producer.purgatory.purge.interval.requests=100
delete.topic.enable=true
启动 Kafka 集群
分别启动 3 台 Kafka 节点,保证集群的高可用
$ ./bin/kafka-server-start.sh -daemon ./config/server.properties
查看 topic 是否创建成功
$ bin/kafka-topics.sh --list --zookeeper localhost:2181
nginx
监控 Kafka Manager
Kafka-manager 是 Yahoo 公司开源的集群管理工具。
可以在 Github 上下载安装:https://github.com/yahoo/kafka-manager

如果遇到 Kafka 消费不及时的话,可以通过到具体 cluster 页面上,增加 partition。Kafka 通过 partition 分区来提高并发消费速度

Logstash
Logstash 提供三大功能
- INPUT 进入
- FILTER 过滤功能
- OUTPUT 出去
如果使用 Filter 功能的话,强烈推荐大家使用 Grok debugger 来预先解析日志格式。

下载
$ wget https://artifacts.elastic.co/downloads/logstash/logstash-6.2.4.tar.gz
解压重命名
$ tar -zxvf logstash-6.2.4.tar.gz
$ mv logstash-6.2.4 logstash
修改 Logstash 配置
修改 Logstash 配置,使之提供 indexer 的功能,将数据插入到 Elasticsearch 集群中
$ vim nginx.conf
input {
kafka {
type => "kafka"
bootstrap_servers => "192.168.0.1:2181,192.168.0.2:2181,192.168.0.3:2181"
topics => "nginx"
group_id => "logstash"
consumer_threads => 2
}
}
output {
elasticsearch {
host => ["192.168.0.1","192.168.0.2","192.168.0.3"]
port => "9300"
index => "nginx-%{+YYYY.MM.dd}"
}
}
启动 Logstash
$ ./bin/logstash -f nginx.conf
Elasticsearch
下载
$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.2.4.tar.gz
解压
$ tar -zxvf elasticsearch-6.2.4.tar.gz
$ mv elasticsearch-6.2.4.tar.gz elasticsearch
修改配置
$ vim config/elasticsearch.yml
cluster.name: es
node.name: es-node1
network.host: 192.168.0.1
discovery.zen.ping.unicast.hosts: ["192.168.0.1"]
discovery.zen.minimum_master_nodes: 1
启动
通过 -d 来后台启动
$ ./bin/elasticsearch -d
打开网页 http://192.168.0.1:9200/, 如果出现下面信息说明配置成功
{
name: "es-node1",
cluster_name: "es",
cluster_uuid: "XvoyA_NYTSSV8pJg0Xb23A",
version: {
number: "6.2.4",
build_hash: "ccec39f",
build_date: "2018-04-12T20:37:28.497551Z",
build_snapshot: false,
lucene_version: "7.2.1",
minimum_wire_compatibility_version: "5.6.0",
minimum_index_compatibility_version: "5.0.0"
},
tagline: "You Know, for Search"
}
控制台
Cerebro 这个名字大家可能觉得很陌生,其实过去它的名字叫 kopf !因为 Elasticsearch 5.0 不再支持 site plugin,所以 kopf 作者放弃了原项目,另起炉灶搞了 cerebro,以独立的单页应用形式,继续支持新版本下 Elasticsearch 的管理工作。

注意点
- Master 与 Data 节点分离,当 Data 节点大于 3 个的时候,建议责任分离,减轻压力
- Data Node 内存不超过 32G ,建议设置成 31 G ,具体原因可以看上一篇文章
- discovery.zen.minimum_master_nodes 设置成 ( total / 2 + 1 ),避免脑裂情况
- 最重要的一点,不要将 ES 暴露在公网中,建议都安装 X-PACK ,来加强其安全性
kibana
下载
$ wget https://artifacts.elastic.co/downloads/kibana/kibana-6.2.4-darwin-x86_64.tar.gz
解压
$ tar -zxvf kibana-6.2.4-darwin-x86_64.tar.gz
$ mv kibana-6.2.4-darwin-x86_64.tar.gz kibana
修改配置
$ vim config/kibana.yml
server.port: 5601
server.host: "192.168.0.1"
elasticsearch.url: "http://192.168.0.1:9200"
启动 Kibana
$ nohup ./bin/kibana &
界面展示
创建索引页面需要到 Management -> Index Patterns 中通过前缀来指定

最终效果展示

kibana汉化
github汉化项目:
https://github.com/anbai-inc/Kibana_Hanization
注意:此项目适用于Kibana 5.x-6.x 的任意版本,汉化过程不可逆,汉化前请注意备份!
# 下载并解压
wget https://github.com/anbai-inc/Kibana_Hanization/archive/master.zip
unzip master.zip
cd master
# 汉化
python main.py Kibana目录
# 启动elasticsearch
cd elasticsearch-6.6.0/bin
elasticsearch -d
# 启动kibana
cd kibana-6.6.0-linux-x86_64/bin
kibana
浏览器访问 localhost:5601
总结
综上,通过上面部署命令来实现 ELK 的整套组件,包含了日志收集、过滤、索引和可视化的全部流程,基于这套系统实现分析日志功能。同时,通过水平扩展 Kafka、Elasticsearch 集群,可以实现日均亿级的日志实时处理。
亿级 ELK 日志平台构建部署实践的更多相关文章
- ELK 日志平台构建
elastic中文社区 https://elasticsearch.cn/ 完整参考 ELK实时日志分析平台环境部署--完整记录 https://www.cnblogs.com/kevingrace/ ...
- 阿里PB级Kubernetes日志平台建设实践
干货分享 | 阿里PB级Kubernetes日志平台建设实践https://www.infoq.cn/article/HiIxh-8o0Lm4b3DWKvph 日志最主要的采集工具是 Agent,在 ...
- 转:亿级Web系统的高容错性实践(好博文)
亿级Web系统的高容错性实践 亿级Web系统的高容错性实践 背景介绍 大概三年前,我在腾讯负责的活动运营系统,因为业务流量规模的数倍增长,系统出现了各种各样的异常,当时,作为开发的我,7*24小时地没 ...
- 亿级Web系统的高容错性实践
亿级Web系统的高容错性实践 背景介绍 大概三年前,我在腾讯负责的活动运营系统,因为业务流量规模的数倍增长,系统出现了各种各样的异常,当时,作为开发的我,7*24小时地没日没夜处理告警,周末和凌晨也经 ...
- 升级到php7相关问题,日请求过亿QQ会员活动平台PHP7升级实践
升级到php7相关问题,日请求过亿QQ会员活动平台PHP7升级实践 日请求过亿:QQ会员活动平台PHP7升级实践http://mp.weixin.qq.com/s?__biz=MjM5MjAwODM4 ...
- elk日志平台搭建小记
最近抽出点时间,搭建了新版本的elk日志平台 elastaicsearch 和logstash,kibana和filebeat都是5.6版本的 中间使用redis做缓存,版本为3.2 使用的系统为ce ...
- Springboot项目使用aop切面保存详细日志到ELK日志平台
上一篇讲过了将Springboot项目中logback日志插入到ELK日志平台,它只是个示例.这一篇来看一下实际使用中,我们应该怎样通过aop切面,拦截所有请求日志插入到ELK日志系统.同时,由于往往 ...
- Springboot项目搭配ELK日志平台
上一篇讲过了elasticsearch和kibana的可视化组合查询,这一篇就来看看大名鼎鼎的ELK日志平台是如何搞定的. elasticsearch负责数据的存储和检索,kibana提供图形界面便于 ...
- 亿级Web系统的容错性建设实践(转)
三年多前,我在腾讯负责的活动运营系统,因为业务流量规模的数倍增长,系统出现了各种各样的异常,那个时候,我7*24小时地没日没夜处理告警,周末和凌晨也经常上线,疲于奔命.后来,当时的老领导对我说:你不能 ...
随机推荐
- macbook 下 spark开发环境搭建(基于idea 和maven)及spark单机写运行jar
参见链接 https://blog.csdn.net/u012373815/article/details/53266301 运行jar包: 将写好的项目打成jar,上传到服务器,进入SPARK_HO ...
- LiquiBase 学习
preconditions mysql database is installed maven has been setted up properly add depedenceies apply p ...
- 使用mysqlproxy实现mysql读写分离
先说一下什么是读写分离吧. 以三台虚拟机为例,搭建一主一从一代理,全部配置好之后,当从proxy插入数据时,该数据会同时插入主数据库,因为主从关系,从数据库也会有数据.当把从数据库执行slave st ...
- R语言中的字符串处理函数
内容概览 尽管R是一门以数值向量和矩阵为核心的统计语言,但字符串有时候也会在数据分析中占到相当大的份量. R语言是一个擅长处理数据的语言,但是也不可避免的需要处理一些字符串(文本数据).如何高 ...
- SpringBoot入门(0) HelloWorld的实现与原理分析
SpringBoot(0) HelloWorld的实现与原理分析 一.环境准备 1.1 环境约束 –jdk1.8:Spring Boot 推荐jdk1.7及以上:java version “1.8.0 ...
- 为什么我们不要 .NET 程序员
英文原文:Why we don’t hire .NET programmers,编译:外刊IT评论 http://blog.jobbole.com/10389/ 也许你已经知道了,我们正在招聘最优秀的 ...
- Ext.NET Grid Group分组使用
- 需要注意的是, 涉及到分页排序, 最好定义GroupDir 方向与分组方式相同. - 譬如工资表按照最新最前分页输出. 如果分组按照默认排序的话, 最就最前. - 界面呈现出2015年, 2016 ...
- C#委托防止事件多次注册
示例代码如下: class NodeInf { public delegate void mydelegate(ProcessContent processContent); private myde ...
- ubuntu18.04 安装mysql server
mysql 5.7支持的最高版本是Ubuntu17 ,即使安装成功后,也会出现各种妖蛾子,本人就被这种问题困扰了好一会.在Ubuntu 18.04下安装mysql,建议安装8.0以上版本! 1. 配置 ...
- Struts2 xxAction-validation.xml使用
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE validators PUBLIC &quo ...