目标检测之faster-RCNN和FPN
今年(2017年第一季度),何凯明大神出了一篇文章,叫做fpn,全称是:feature pyramid network for object Detection,为什么发这篇文章,根据
我现在了解到的是对小目标和大目标识别率都好。为什么?我们来看下面一幅图:
此处来自:http://blog.csdn.net/u014380165/article/details/72890275
(a)图像金字塔,即将图像做成不同的scale,然后不同scale的图像生成对应的不同scale的特征。这种方法的缺点在于增加了时间成本。有些算法会在测试时候采用图像金字塔。
(b)像SPP net,Fast RCNN,Faster RCNN是采用这种方式,即仅采用网络最后一层的特征。
(c)像SSD(Single Shot Detector)采用这种多尺度特征融合的方式,没有上采样过程,即从网络不同层抽取不同尺度的特征做预测,这种方式不会增加额外的计算量。作者认为SSD算法中没有用到足够低层的特征(在SSD中,最低层的特征是VGG网络的conv4_3),而在作者看来足够低层的特征对于检测小物体是很有帮助的。
(d)本文作者是采用这种方式,顶层特征通过上采样和低层特征做融合,而且每层都是独立预测的。
其中,图D是fpn网络的,它采用每一层都预测目标,可以这样理解,比较高的层是预测大目标,因为经过多几次的卷积后,
使得我们的“合计感受野”变大了,可以“看到”大目标了。但是,小目标却因为失去了,因为经过多次卷积、池化后,小目标
的特征一直在损失,最后后面就没有了,这时候,最底层就预测小目标,因为最底层的最大呀,经过卷积、池化操作较少呀。
就像有两个摄像头,焦距不一样,可以看到远近的物体。在这片文章中,是使用resnet101网络,resnet使用4个block,它就是使用
第4个block作为处理,(最近我也在做小目标识别的项目,都是小目标,幸好我rpn是使用conv3,这样,小目标的特征就损失
不多,运气好,刚好可以用,要是不work,按之前的,肯定是找不到问题的,不过,现在问题是样的目标,占图像面积比大的情况
会漏检,尴尬!!!)就是如下图:
如上图改造,每层anchor的大小都不一样,但是,从底层往上是变大的,目标就是预测不同尺寸大小的图片,使得整个算法的大范围尺度的目标识别适应性更好!!!!
具体可以参考下面博客:
1、http://blog.csdn.net/u014380165/article/details/72890275
2、http://blog.csdn.net/dcxhun3/article/details/59055974
3、http://blog.csdn.net/jesse_mx/article/details/54588085
目标检测之faster-RCNN和FPN的更多相关文章
- 【目标检测】Faster RCNN算法详解
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...
- 目标检测算法Faster R-CNN
一:Faster-R-CNN算法组成: 1.PRN候选框提取模块: 2.Fast R-CNN检测模块. 二:Faster-R-CNN框架介绍 三:RPN介绍 3.1训练步骤:1.将图片输入到VGG或Z ...
- 【深度学习】目标检测算法总结(R-CNN、Fast R-CNN、Faster R-CNN、FPN、YOLO、SSD、RetinaNet)
目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括F ...
- 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 论文笔记:目标检测算法(R-CNN,Fast R-CNN,Faster R-CNN,FPN,YOLOv1-v3)
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的 ...
- 【目标检测】Cascade R-CNN 论文解析
目录 0. 论文链接 1. 概述 2. 网络结构的合理性 3. 网络结构 4. 参考链接 @ 0. 论文链接 Cascade R-CNN 1. 概述 这是CVPR 2018的一篇文章,这篇文章也为 ...
- 第二十九节,目标检测算法之R-CNN算法详解
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...
- 目标检测算法之R-CNN算法详解
R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法.后面提到的Fast R-CNN.Faster R-CNN全部都是建立在R-CNN的基础上的. 传统目标检测 ...
- 物体检测丨Faster R-CNN详解
这篇文章把Faster R-CNN的原理和实现阐述得非常清楚,于是我在读的时候顺便把他翻译成了中文,如果有错误的地方请大家指出. 原文:http://www.telesens.co/2018/03/1 ...
- 目标检测算法之R-CNN和SPPNet原理
一.R-CNN的原理 R-CNN的全称是Region-CNN,它可以说是第一个将深度学习应用到目标检测上的算法.后面将要学习的Fast R-CNN.Faster R-CNN全部都是建立在R-CNN基础 ...
随机推荐
- https原理及其中所包含的对称加密、非对称加密、数字证书、数字签名
声明:本文章已授权公众号Hollis转载,如需转载请标明转载自https://www.cnblogs.com/wutianqi/p/10654245.html(安静的boy) 一.为什么要使用http ...
- Javascript 2.3
声明多个变量用逗号隔开 var teacher=30,stu=40; Javascript变量允许包含 美元符号 $
- Hyper-V 连网备忘
最近总是把简单问题复杂化 1.内网连接: Hyper-V 上网一个内网连接足矣,宿主机与客户机可以互访,而且都可以上网.创建一个内网连接,默认配置界面如下: 然后把本地网卡共享给这个新建的内网连接,把 ...
- centos7生产环境下openssh升级
由于生产环境ssh版本太低,导致使用安全软件扫描时提示系统处于异常不安全的状态,主要原因是ssh漏洞.推荐通过升级ssh版本修复漏洞 因为是生产环境,所以有很多问题需要注意.为了保险起见,在生产环境下 ...
- linux学习笔记(二:权限)
Linux下有两种用户: 超级用户(root).普通用户. 超级用户:可以再linux系统下做任何事情,不受限制 普通用户:在linux下做有限的事情,例如:rm -rf 只会删除自己的东西. 超级用 ...
- live555 交叉编译移植到海思开发板
本文章参考了.http://blog.csdn.net/lawishere/article/details/8182952,写了hi3518的配置说明.特此感谢 https://blog.csdn.n ...
- WebForm AnyWay
项目地址 : https://github.com/kelin-xycs/WebFormAnyWay WebForm AnyWay 用 WebForm 构建 简洁高效 的 Web 应用 WebFor ...
- MySQL 列,可选择的数据类型(通过sql命令查看:`help create table;`)
MySQL 列,可选择的数据类型(通过sql命令查看:help create table;) BIT[(length)] | TINYINT[(length)] [UNSIGNED] [ZEROFIL ...
- spring aop无法拦截类内部的方法调用
1.概念 拦截器的实现原理就是动态代理,实现AOP机制.Spring 的代理实现有两种:一是基于 JDK Dynamic Proxy 技术而实现的:二是基于 CGLIB 技术而实现的.如果目标对象实现 ...
- 汉语言处理工具pyhanlp的简繁转换
繁简转换 HanLP几乎实现了所有我们需要的繁简转换方式,并且已经封装到了HanLP中,使得我们可以轻松的使用,而分词器中已经默认支持多种繁简格式或者混合.这里我们不再做过多描述. 说明: ·Ha ...