手动安装

sudo rm -rf /usr/local/lib/python2.7/site-packages/numpy/
sudo rm -rf /usr/local/lib/python2.7/site-packages/numpy-*.egg*
sudo rm -rf /usr/local/bin/f2py pip安装
 sudo rm -rf /usr/local/lib/python2.7/dist-packages/numpy/
sudo rm -rf /usr/local/lib/python2.7/dist-packages/numpy-*.egg*
sudo rm -rf /usr/local/bin/f2py

export BLAS=~/.local/lib/libopenblas.a
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.local/lib/
30down voteaccepted

I just compiled numpy inside a virtualenv with OpenBLAS integration, and it seems to be working ok. This was my process:

  1. Compile OpenBlas:

    git clone git://github.com/xianyi/OpenBLAS
    cd OpenBLAS && make FC=gfortran
    sudo make PREFIX=/opt/OpenBLAS install
    sudo ldconfig
  2. Grab the numpy source code:

    git clone https://github.com/numpy/numpy
    cd numpy
  3. Copy site.cfg.example to site.cfg and edit the copy:

    cp site.cfg.example site.cfg
    nano site.cfg

    Uncomment these lines:

    ....
    [openblas]
    libraries = openblas
    library_dirs = /opt/OpenBLAS/lib
    include_dirs = /opt/OpenBLAS/include
    ....
  4. Check configuration, build, install (optionally in a virutalenv)

    python setup.py config

    The output should look something like this:

    ...
    openblas_info:
    FOUND:
    libraries = ['openblas', 'openblas']
    library_dirs = ['/opt/OpenBLAS/lib']
    language = f77 FOUND:
    libraries = ['openblas', 'openblas']
    library_dirs = ['/opt/OpenBLAS/lib']
    language = f77
    ...

    Then just build and install:

    python setup.py build && python setup.py install
  5. Optional: you can use this script to test performance for different thread counts.

    OMP_NUM_THREADS=1 python build/test_numpy.py
    
    FAST BLAS
    version: 1.8.0.dev-27690e3
    maxint: 9223372036854775807 dot: 0.100896406174 sec OMP_NUM_THREADS=8 python test_numpy.py FAST BLAS
    version: 1.8.0.dev-27690e3
    maxint: 9223372036854775807 dot: 0.0660264015198 sec

There seems to be a noticeable improvement in performance for higher thread counts. However, I haven't tested this very systematically, and it's likely that for smaller matrices the additional overhead would outweigh the performance benefit from a higher thread count.

answered Jan 18 '13 at 2:50
ali_m
7,0352055
 
1  
I apply what you did bu tending with foollowing error at your test script /linalg/lapack_lite.so: undefined symbol: zgelsd_ –  Erogol Jan 30 at 17:47 
1  
@Erogol Could you check that lapack_lite.so is correctly linked against the libopenblas.so you just built? You can call ldd /<path-to-site-packages>/numpy/linalg/lapack_lite.so - if you installed OpenBLAS with PREFIX=/usr/local you should see something like libopenblas.so.0 => /usr/local/lib/libopenblas.so.0 in the output. –  ali_m Jan 30 at 18:01 
1  
I have following line even I do strictly what you typed above answer. libopenblas.so.0 => /usr/lib/libopenblas.so.0 (0x00007f77e08fc000) –  Erogol Jan 30 at 18:06 
    
It sounds like numpy has not been built correctly. I would suggest you uninstall the broken copy of numpy, do a python setup.py clean and python setup.py build and look for any error messages during the compilation. –  ali_m Jan 30 at 18:14 
    
Also, you should probably call sudo ldconfig after installing OpenBLAS if you haven't already (I've added this line to my answer) –  ali_m Jan 30 at 18:21

OMP_NUM_THREADS=7 python test.py

#!/usr/bin/env python
import numpy
import sys
import timeit

try:
import numpy.core._dotblas
print 'FAST BLAS'
except ImportError:
print 'slow blas'

print "version:", numpy.__version__
print "maxint:", sys.maxint
print

x = numpy.random.random((1000,1000))

setup = "import numpy; x = numpy.random.random((1000,1000))"
count = 5

t = timeit.Timer("numpy.dot(x, x.T)", setup=setup)
print "dot:", t.timeit(count)/count, "sec"

numpy delete的更多相关文章

  1. numpy delete方法

    import numpy as np lines = np.loadtxt(r'./test.txt',delimiter=',',dtype=int) print(lines) lines_copy ...

  2. python numpy sum函数用法

    numpy.sum numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False)[source] Sum of array element ...

  3. NumPy 学习笔记(三)

    NumPy 数组操作: 1.修改数组形状 a.numpy.reshape(arr, newshape, order='C') 在不改变数据的条件下修改形状 b.numpy.ndarray.flat 是 ...

  4. Numpy学习笔记(二)

    (1)NumPy - 切片和索引 l  ndarray对象中的元素遵循基于零的索引. 有三种可用的索引方法类型: 字段访问,基本切片和高级索引. l  基本切片 Python 中基本切片概念到 n 维 ...

  5. Numpy 数组操作

    Numpy 数组操作 Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 修改数组形状 函数 描述 resh ...

  6. Python常用库之一:Numpy

    Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度 ...

  7. 1,Python常用库之一:Numpy

    Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度 ...

  8. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

  9. numpy tricks(二)—— 删除多维数组的行或列

    numpy.delete numpy 下的多维数组,如果要删除其中的某些行,或某些列,不可以用置空的方式,进行设置: A[1, :] = None, ⇒ 会将 A 中的第一行数据全部置为 Nan 1. ...

随机推荐

  1. Python基础(十一) 类继承

    类继承: 继承的想法在于,充份利用已有类的功能,在其基础上来扩展来定义新的类. Parent Class(父类) 与 Child Class(子类): 被继承的类称为父类,继承的类称为子类,一个父类, ...

  2. Qt 的坐标系统

    QWidget *q = , Qt::WindowStaysOnTopHint); q->setWindowTitle(QObject::tr("父窗口widget")); ...

  3. Practical Lessons from Predicting Clicks on Ads at Facebook

    ABSTRACT 这篇paper中作者结合GBDT和LR,取得了很好的效果,比单个模型的效果高出3%.随后作者研究了对整体预测系统产生影响的几个因素,发现Feature(能挖掘出用户和广告的历史信息) ...

  4. 杨韬的Python/Jupyter学习笔记

    Python语法学习 https://zhuanlan.zhihu.com/p/24162430 Python 安装库 安装Jupyter Notebook 先安装Python cmd 进入K:\Ju ...

  5. 【转】AI类人工智能产品经理的丛林法则

    本文转载自:https://blog.csdn.net/buptgshengod/article/details/77030338 AI是大家都很关注的领域,然而对于大部分想要入行的同学来讲,AI的算 ...

  6. git忽略某些文件的几种方法

    不知道为什么我记得我写过这个内容但是又找不到了,只好照着大致记忆写一下以备留存. 1.首先肯定是.gitignore文件 .gitignore文件适合在文件尚未被追踪时加入,将其忽略便可以不上传到远程 ...

  7. docker 启动失败

    今天本来想抽空弄一下openshift,新装了个centos结果docker起不来. 报错内容: [root@master docker]# systemctl status docker.servi ...

  8. Solr和Lucene的区别?

    1.Lucene 是工具包 是jar包 2.Solr是索引引擎服务  War 3.Solr是基于Lucene(底层是由Lucene写的) 4.上面二个软件都是Apache公司由java写的 5.Luc ...

  9. sublime package control INSTALLATION

    Simple The simplest method of installation is through the Sublime Text console. The console is acces ...

  10. jQuery实现淘宝轮播图

    我爱撸码,撸码使我感到快乐大家好,我是Counter今天给大家分享的是利用jQuery来实现淘宝轮播图,揭开这层神秘的面纱,CSS样式就不做过多的赘述了,主要就是实现的原理,也就是jQuery,老样子 ...