手动安装

sudo rm -rf /usr/local/lib/python2.7/site-packages/numpy/
sudo rm -rf /usr/local/lib/python2.7/site-packages/numpy-*.egg*
sudo rm -rf /usr/local/bin/f2py pip安装
 sudo rm -rf /usr/local/lib/python2.7/dist-packages/numpy/
sudo rm -rf /usr/local/lib/python2.7/dist-packages/numpy-*.egg*
sudo rm -rf /usr/local/bin/f2py

export BLAS=~/.local/lib/libopenblas.a
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.local/lib/
30down voteaccepted

I just compiled numpy inside a virtualenv with OpenBLAS integration, and it seems to be working ok. This was my process:

  1. Compile OpenBlas:

    git clone git://github.com/xianyi/OpenBLAS
    cd OpenBLAS && make FC=gfortran
    sudo make PREFIX=/opt/OpenBLAS install
    sudo ldconfig
  2. Grab the numpy source code:

    git clone https://github.com/numpy/numpy
    cd numpy
  3. Copy site.cfg.example to site.cfg and edit the copy:

    cp site.cfg.example site.cfg
    nano site.cfg

    Uncomment these lines:

    ....
    [openblas]
    libraries = openblas
    library_dirs = /opt/OpenBLAS/lib
    include_dirs = /opt/OpenBLAS/include
    ....
  4. Check configuration, build, install (optionally in a virutalenv)

    python setup.py config

    The output should look something like this:

    ...
    openblas_info:
    FOUND:
    libraries = ['openblas', 'openblas']
    library_dirs = ['/opt/OpenBLAS/lib']
    language = f77 FOUND:
    libraries = ['openblas', 'openblas']
    library_dirs = ['/opt/OpenBLAS/lib']
    language = f77
    ...

    Then just build and install:

    python setup.py build && python setup.py install
  5. Optional: you can use this script to test performance for different thread counts.

    OMP_NUM_THREADS=1 python build/test_numpy.py
    
    FAST BLAS
    version: 1.8.0.dev-27690e3
    maxint: 9223372036854775807 dot: 0.100896406174 sec OMP_NUM_THREADS=8 python test_numpy.py FAST BLAS
    version: 1.8.0.dev-27690e3
    maxint: 9223372036854775807 dot: 0.0660264015198 sec

There seems to be a noticeable improvement in performance for higher thread counts. However, I haven't tested this very systematically, and it's likely that for smaller matrices the additional overhead would outweigh the performance benefit from a higher thread count.

answered Jan 18 '13 at 2:50
ali_m
7,0352055
 
1  
I apply what you did bu tending with foollowing error at your test script /linalg/lapack_lite.so: undefined symbol: zgelsd_ –  Erogol Jan 30 at 17:47 
1  
@Erogol Could you check that lapack_lite.so is correctly linked against the libopenblas.so you just built? You can call ldd /<path-to-site-packages>/numpy/linalg/lapack_lite.so - if you installed OpenBLAS with PREFIX=/usr/local you should see something like libopenblas.so.0 => /usr/local/lib/libopenblas.so.0 in the output. –  ali_m Jan 30 at 18:01 
1  
I have following line even I do strictly what you typed above answer. libopenblas.so.0 => /usr/lib/libopenblas.so.0 (0x00007f77e08fc000) –  Erogol Jan 30 at 18:06 
    
It sounds like numpy has not been built correctly. I would suggest you uninstall the broken copy of numpy, do a python setup.py clean and python setup.py build and look for any error messages during the compilation. –  ali_m Jan 30 at 18:14 
    
Also, you should probably call sudo ldconfig after installing OpenBLAS if you haven't already (I've added this line to my answer) –  ali_m Jan 30 at 18:21

OMP_NUM_THREADS=7 python test.py

#!/usr/bin/env python
import numpy
import sys
import timeit

try:
import numpy.core._dotblas
print 'FAST BLAS'
except ImportError:
print 'slow blas'

print "version:", numpy.__version__
print "maxint:", sys.maxint
print

x = numpy.random.random((1000,1000))

setup = "import numpy; x = numpy.random.random((1000,1000))"
count = 5

t = timeit.Timer("numpy.dot(x, x.T)", setup=setup)
print "dot:", t.timeit(count)/count, "sec"

numpy delete的更多相关文章

  1. numpy delete方法

    import numpy as np lines = np.loadtxt(r'./test.txt',delimiter=',',dtype=int) print(lines) lines_copy ...

  2. python numpy sum函数用法

    numpy.sum numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False)[source] Sum of array element ...

  3. NumPy 学习笔记(三)

    NumPy 数组操作: 1.修改数组形状 a.numpy.reshape(arr, newshape, order='C') 在不改变数据的条件下修改形状 b.numpy.ndarray.flat 是 ...

  4. Numpy学习笔记(二)

    (1)NumPy - 切片和索引 l  ndarray对象中的元素遵循基于零的索引. 有三种可用的索引方法类型: 字段访问,基本切片和高级索引. l  基本切片 Python 中基本切片概念到 n 维 ...

  5. Numpy 数组操作

    Numpy 数组操作 Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 修改数组形状 函数 描述 resh ...

  6. Python常用库之一:Numpy

    Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度 ...

  7. 1,Python常用库之一:Numpy

    Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度 ...

  8. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

  9. numpy tricks(二)—— 删除多维数组的行或列

    numpy.delete numpy 下的多维数组,如果要删除其中的某些行,或某些列,不可以用置空的方式,进行设置: A[1, :] = None, ⇒ 会将 A 中的第一行数据全部置为 Nan 1. ...

随机推荐

  1. linux查看cpu个数,线程数及cpu型号

    1.查看CPU逻辑id grep 'physical id' /proc/cpuinfo | sort -u physical id : 0physical id : 1 2.查看物理CPU个数 $ ...

  2. jenkins配置工程目录-启动case

    1.我们在python里面编辑的脚本可以正常跑,但是在cmd里面跑就不行了,找不到自己定义的方法模块,这个时候我们要搞个环境变量 name  :   PYTHONPATH   val : 工程目录路劲 ...

  3. JavaScript知识精简

      JS单线程,同步,一次执行某一段代码,等到前一个程序执行完毕再执行.,阻塞,安全. 多线程,异步,不用等到前一个程序执行完毕就执行. 数据类型 JavaScript 是 弱类型 语言,但并不是没有 ...

  4. lua 特殊时间格式转换

    [1]时间格式转换需求 工作中,因业务需要将时间格式进行转换.需求内容如下: 原格式:17:04:49.475  UTC Mon Mar 04 2019 转换格式:2019-03-04 17:04:4 ...

  5. Python+OpenCV图像处理(十五)—— 圆检测

    简介: 1.霍夫圆变换的基本原理和霍夫线变换原理类似,只是点对应的二维极径.极角空间被三维的圆心和半径空间取代.在标准霍夫圆变换中,原图像的边缘图像的任意点对应的经过这个点的所有可能圆在三维空间用圆心 ...

  6. myeclipse集成meavn

    环境准备: JDK 1.6 Maven 3.0.4 myeclipse 8.6.1 安装 Maven 之前要求先确定你的 JDK 已经安装配置完成.Maven是 Apache 下的一个项目,目前最新版 ...

  7. BDD数据集(mask_rcnn)1

    mask_rcnn中ballon的例子 classsification VS semantic segmention VS object detection VS instance segmentio ...

  8. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

  9. 算法(第四版)C# 习题题解——1.1

    写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 善用 Ctrl + F 查找题 ...

  10. 【做题】SDOI2017硬币游戏——方程&概念处理

    原文链接 https://www.cnblogs.com/cly-none/p/9825339.html 题意:给出\(n\)个长度为\(m\)的互不相同的01串.有另一个串,初始为空.不断进行如下操 ...