关于word2vec的原理知识参考文章https://www.cnblogs.com/Micang/p/10235783.html

  语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据
  数据处理参考这篇文章

  模型训练:

# -*- coding: utf-8-*-
from gensim.models.word2vec import Word2Vec
sentences = [['A1','A2'],['A1','A3','A2']] num=0
with open('sohu_train.txt') as trainText: #, encoding='utf-8'
for line in trainText:
id,catgre,body= line.split('^_^')
words=body.replace('\n','').split(' ')
sentences.append(words)
# if num>1000:break
num+=1
# print(sentences) model= Word2Vec(min_count=1)
print("start train ...")
model.build_vocab(sentences)
model.train(sentences,total_examples = model.corpus_count,epochs = model.iter)
print("train finished!",num) model.save('./sohu_model/Model')
#model.save_word2vec_format('/tmp/mymodel.txt',binary = False)
#model.save_word2vec_format('/tmp/mymodel.bin.gz',binary = True)
#前一组方法保存的文件不能利用文本编辑器查看但是保存了训练的全部信息,可以在读取后追加训练
#后一组方法保存为word2vec文本格式但是保存时丢失了词汇树等部分信息,不能追加训练
print("save finished!")

  模型使用:

# #模型使用
model = Word2Vec.load('./sohu_model/Model')
print("load model sesuess!")
# model.most_similar(['北京']) print u'most similar with 北京:'
for i in model.most_similar("北京"): #计算余弦距离最接近“北京”的10个词
print i[0].decode('utf-8'),i[1] print u'皇帝+女性-男性:'
for i in model.most_similar(positive = ['皇帝','女性'],negative = ['男性'],topn = 3):print i[0].decode('utf-8'),i[1] print u'手机+移动-智能:'
for i in model.most_similar(positive = ['手机','移动'],negative = ['智能'],topn = 3):print i[0].decode('utf-8'),i[1] print u'电影+科幻-剧情:'
for i in model.most_similar(positive = ['电影','科幻'],negative = ['剧情'],topn = 3):print i[0].decode('utf-8'),i[1] print u'北京 vector:'
print model['北京']

  输出:

C:\Python27\lib\site-packages\gensim\utils.py:: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
load model sesuess!
most similar with 北京:
C:\Python27\lib\site-packages\gensim\matutils.py:: FutureWarning: Conversion of the second argument of issubdtype from `int` to `np.signedinteger` is deprecated. In future, it will be treated as `np.int32 == np.dtype(int).type`.
if np.issubdtype(vec.dtype, np.int):
南京 0.670382142067
上海 0.661236405373
成都 0.639219224453
杭州 0.63784122467
广州 0.631313323975
深圳 0.624626278877
武汉 0.624594151974
昆明 0.620243370533
长春 0.61394149065
长沙 0.60389906168
皇帝+女性-男性:
哥 0.60431176424
魔术师 0.586149096489
魔女 0.581812143326
手机+移动-智能:
智能手机 0.605030536652
互联网 0.54615008831
苹果 0.539426982403
电影+科幻-剧情:
纪录片 0.648482918739
动画 0.639703273773
迪斯尼 0.61851131916
北京 vector:
[-0.08981118 0.18538047 -4.7453156 -1.7730242 2.0390635 2.6085184
5.088326 2.8057106 2.6798103 -1.4660915 2.778077 2.4279277
0.69682086 -3.0003173 2.1341784 0.32419717 -5.2817945 0.18809023
-1.3016417 3.8344557 -0.87402123 -0.26100433 2.8857462 -2.725345
-2.5024219 -0.70686543 -0.4838663 -2.2535524 0.23617841 3.329134
3.9053504 -1.9609474 -3.4581995 1.2530506 -2.079397 1.6266809
0.23296945 1.4600109 -1.9104419 0.80835503 -0.13650164 3.355157
2.4561696 0.6016032 -1.0312346 1.6474588 1.320931 1.4579619
1.8017172 -3.5526018 1.2293625 4.798621 -3.5554793 0.5800354
3.7429204 -0.4906999 -1.3069346 -1.0603447 -0.95469594 -0.35445935
-1.7658769 -3.2370284 -2.2224278 -0.56134427 -0.46095294 2.8492029
2.7202766 -3.3692176 1.1739812 -1.9770668 0.37050596 1.1764477
-0.27834406 5.033905 0.09570877 -0.5670941 -2.1803875 -0.9094422
1.0485793 0.03497482 -2.07145 -0.8045679 -1.8192968 2.6160874
0.5630188 -0.45463613 -0.22750562 2.2233796 3.4276621 -0.8689221
1.5558586 -0.39026013 -1.1843458 -3.378433 -4.2200727 1.6359595
2.27458 -1.6011585 -0.89109504 2.3993087 ]

利用搜狐新闻语料库训练100维的word2vec——使用python中的gensim模块的更多相关文章

  1. 利用python中的gensim模块训练和测试word2vec

    word2vec的基础知识介绍参考上一篇博客和列举的参考资料. 首先利用安装gensim模块,相关依赖如下,注意版本要一致: Python >= 2.7 (tested with version ...

  2. 利用jieba,word2vec,LR进行搜狐新闻文本分类

    一.简介 1)jieba 中文叫做结巴,是一款中文分词工具,https://github.com/fxsjy/jieba 2)word2vec 单词向量化工具,https://radimrehurek ...

  3. 利用朴素贝叶斯分类算法对搜狐新闻进行分类(python)

    数据来源  https://www.sogou.com/labs/resource/cs.php介绍:来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据,提供URL ...

  4. 【NLP】3000篇搜狐新闻语料数据预处理器的python实现

    3000篇搜狐新闻语料数据预处理器的python实现 白宁超 2017年5月5日17:20:04 摘要: 关于自然语言处理模型训练亦或是数据挖掘.文本处理等等,均离不开数据清洗,数据预处理的工作.这里 ...

  5. 基于jieba,TfidfVectorizer,LogisticRegression进行搜狐新闻文本分类

    一.简介 此文是对利用jieba,word2vec,LR进行搜狐新闻文本分类的准确性的提升,数据集和分词过程一样,这里就不在叙述,读者可参考前面的处理过程 经过jieba分词,产生24000条分词结果 ...

  6. sohu_news搜狐新闻类型分类

    数据获取 数据是从搜狐新闻开放的新闻xml数据,经过一系列的处理之后,生成的一个excel文件 该xml文件的处理有单独的处理过程,就是用pandas处理,该过程在此省略 import numpy a ...

  7. 搜狗输入法弹出搜狐新闻的解决办法(sohunews.exe)

    狗输入法弹出搜狐新闻的解决办法(sohunews.exe) 1.找到搜狗输入法的安装目录(一般是C:\program files\sougou input\版本号\)2.右键点击sohunews.ex ...

  8. 搜狐新闻APP是如何使用HUAWEI DevEco IDE快速集成HUAWEI HiAI Engine

    6月12日,搜狐新闻APP最新版本在华为应用市场正式上线啦! 那么,这一版本的搜狐新闻APP有什么亮点呢? 先抛个图,来直接感受下—— ​ 模糊图片,瞬间清晰! 效果杠杠的吧. 而藏在这项神操作背后的 ...

  9. 世界更清晰,搜狐新闻客户端集成HUAWEI HiAI 亮相荣耀Play发布会!

    ​​6月6日,搭载有“很吓人”技术的荣耀Play正式发布,来自各个领域的大咖纷纷为新机搭载的惊艳技术站台打call,其中,搜狐公司董事局主席兼首席执行官张朝阳揭秘:华为和搜狐新闻客户端在硬件AI方面做 ...

随机推荐

  1. LeetCode--No.003 Longest Substring Without Repeating Characters

    Longest Substring Without Repeating Characters Total Accepted: 167158 Total Submissions: 735821 Diff ...

  2. 脚手架vue-cli系列四:vue-cli工程webpack的基本用法

    webpack的打包依赖于它的一个重要配置文件webpack.config.js,在这个配置文件中就可以指定所有在源代码编译过程中的工作了,就一个配置就可以与冗长的Gruntfile或者Gulpfil ...

  3. docker 容器时间和系统时间不一致

    docker cp /etc/localtime 容器名:/etc/localtime cp /etc/localtime 24fe94504424:/etc/localtime date -s 09 ...

  4. 解决Chrome浏览器主页被hao123、360和2345篡改简单有效方法

    转自:https://blog.csdn.net/qq_32635971/article/details/72793115?locationNum=10&fps=1 当你打开浏览器看到各种首页 ...

  5. Hadoop RPC源码分析

    Hadoop RPC源码分析 上一篇文章http://www.cnblogs.com/dycg/p/rpc.html 讲了Hadoop RPC的使用方法,这一次我们从demo中一层层进行分析. RPC ...

  6. ReentrantLock实现原理分析

    ReentrantLock主要利用CAS+CLH队列来实现.它支持公平锁和非公平锁,两者的实现类似. CAS:Compare and Swap,比较并交换.CAS有3个操作数:内存值V.预期值A.要修 ...

  7. Django集成Markdown编辑器【附源码】

    专注内容写作的你一定不要错过markdown 简单介绍 markdown是一种标记语言,通过简单的标记语法可以使普通的文本内容具有一定的格式,使用非常简单,学习成本极低 目前各大Blog平台都已支持m ...

  8. php,vue,vue-ssr 做出来的页面有什么区别?

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由shirishiyue发表于云+社区专栏 目前我这边的web页面,都是采用php+smarty模板生成的,是一种比较早期的开发模式.好 ...

  9. HDFS集群数据不均衡处理

    一.概述 公司使用是自己搭建的hadoop集群,版本2.7.3,最近发现出现了hdfs数据存储不均衡的现象,其中有一个datanode使用了65%,而有一个只使用了20%.hadoop集群使用的时间长 ...

  10. 设计模式教程(Design Patterns Tutorial)笔记之一 创建型模式(Creational Patterns)

    目录 · 概述 · Factory · What is the Factory Design Pattern? · Sample Code · Abstract Factory · What is t ...