Kosaraju 算法检测有向图的强连通性
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strongly Connected)。如下图中,任意两个顶点都是互相可达的。

对于无向图,判断图是否是强连通的,可以直接使用深度优先搜索(DFS)或广度优先搜索(BFS),从任意一个顶点出发,如果遍历的结果包含所有的顶点,则说明图是强连通的。
而对于有向图,则不能使用 DFS 或 BFS 进行直接遍历来判断。如下图中,如果从顶点 0 开始遍历则可判断是强连通的,而如果从其它顶点开始遍历则无法抵达所有节点。

那么,该如何判断有向图的强连通性呢?
实际上,解决该问题的较好的方式就是使用强连通分支算法(SCC:Strongly Connected Components),可以在 O(V+E) 时间内找到所有的 SCC。如果 SCC 的数量是 1,则说明整个图是强连通的。
有向图 G = (V, E) 的一个强连通分支是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的。
实现 SCC 的一种算法就是 Kosaraju 算法。Kosaraju 算法基于深度优先搜索(DFS),并对图进行两次 DFS 遍历,算法步骤如下:
- 初始化设置所有的顶点为未访问的;
- 从任意顶点 v 开始进行 DFS 遍历,如果遍历结果没有访问到所有顶点,则说明图不是强连通的;
- 置换整个图(Reverse Graph);
- 设置置换后的图中的所有顶点为未访问过的;
- 从与步骤 2 中相同的顶点 v 开始做 DFS 遍历,如果遍历没有访问到所有顶点,则说明图不是强连通的,否则说明图是强连通的。
Kosaraju 算法的思想就是,如果从顶点 v 可以抵达所有顶点,并且所有顶点都可以抵达 v,则说明图是强连通的。
using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
Graph g = new Graph();
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , ); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
Console.WriteLine(); Console.WriteLine("Is graph strongly connected: {0}", g.Kosaraju()); Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } } public IEnumerable<Edge> Edges
{
get { return _adjacentEdges.Values.SelectMany(e => e); }
} public int EdgeCount { get { return this.Edges.Count(); } } public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} public bool Kosaraju()
{
// Step 1: Mark all the vertices as not visited (For first DFS)
bool[] visited = new bool[VertexCount];
for (int i = ; i < visited.Length; i++)
visited[i] = false; // Step 2: Do DFS traversal starting from first vertex.
DFS(, visited); // If DFS traversal doesn’t visit all vertices, then return false.
for (int i = ; i < VertexCount; i++)
if (visited[i] == false)
return false; // Step 3: Create a reversed graph
Graph reversedGraph = Transpose(); // Step 4: Mark all the vertices as not visited (For second DFS)
for (int i = ; i < visited.Length; i++)
visited[i] = false; // Step 5: Do DFS for reversed graph starting from first vertex.
// Staring Vertex must be same starting point of first DFS
reversedGraph.DFS(, visited); // If all vertices are not visited in second DFS, then
// return false
for (int i = ; i < VertexCount; i++)
if (visited[i] == false)
return false; return true;
} void DFS(int v, bool[] visited)
{
visited[v] = true; if (_adjacentEdges.ContainsKey(v))
{
foreach (var edge in _adjacentEdges[v])
{
if (!visited[edge.End])
DFS(edge.End, visited);
}
}
} Graph Transpose()
{
Graph g = new Graph(this.VertexCount); foreach (var edge in this.Edges)
{
g.AddEdge(edge.End, edge.Begin, edge.Weight);
} return g;
}
}
}
}
参考资料
- Connectivity in a directed graph
- Strongly Connected Components
- Tarjan's Algorithm to find Strongly Connected Components
本篇文章《Kosaraju 算法检测有向图的强连通性》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。
Kosaraju 算法检测有向图的强连通性的更多相关文章
- 【模板】Tarjan算法与有向图的强连通性
概念 流图 给定一个有向图G= (V,E),若存在r∈V满足,满足从r出发能够到达V中所有的点,则称G是一个流图,记为(G,r),其中r是流图的源点. 流图的搜索树 在一个流图(G,r)上从r出发,进 ...
- 强联通分量之kosaraju算法
首先定义:强联通分量是有向图G=(V, E)的最大结点集合,满足该集合中的任意一对结点v和u,路径vu和uv同时存在. kosaraju算法用来寻找强联通分量.对于图G,它首先随便找个结点dfs,求出 ...
- 图解:有向环、拓扑排序与Kosaraju算法
图算法第三篇 图解:有向环.拓扑排序与Kosaraju算法 首先来看一下今天的内容大纲,内容非常多,主要是对算法思路与来源的讲解,图文并茂,希望对你有帮助~ 1.有向图的概念和表示 概念 有向图与上一 ...
- 7-6-有向图强连通分量的Kosaraju算法-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版
课本源码部分 第7章 图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版 源码使用说明 链接☛☛☛ <数据结构-C语言版>(严 ...
- hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法
点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...
- Kosaraju算法---强联通分量
1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组). 算法描叙: :对 ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 图论-求有向图的强连通分量(Kosaraju算法)
求有向图的强连通分量 Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...
- (转)求有向图的强连通分量个数(kosaraju算法)
有向图的连通分量的求解思路 kosaraju算法 逛了很多博客,感觉都很难懂,终于找到一篇能看懂的,摘要记录一下 原博客https://www.cnblogs.com/nullzx/p/6437926 ...
随机推荐
- 解决一则enq: TX – row lock contention的性能故障
上周二早上,收到项目组的一封邮件: 早上联代以下时间点用户有反馈EDI导入"假死",我们跟踪了EDI导入服务,服务是正常在跑,可能是处理的慢所以用户感觉是"假死" ...
- ethhdr、ether_header、iphdr、tcphdr、udphdr 结构介绍
转自:http://blog.csdn.net/petershina/article/details/8573853 ************************eth的结构*********** ...
- winform快速开发平台 -> 基础组件之分页控件
一个项目控件主要由及部分的常用组件,当然本次介绍的是通用分页控件. 处理思想:我们在处理分页过程中主要是针对数据库操作. 一般情况主要是传递一些开始位置,当前页数,和数据总页数以及相关关联的业务逻辑. ...
- CozyRSS开发记录21-默认RSS源列表
CozyRSS开发记录21-默认RSS源列表 1.默认列表 在第一次使用CozyRSS的情况下,我们让它内置五个RSS源吧: 2.响应RSS源的更新 先不处理RSS源列表项的点击,响应下下拉菜单里的更 ...
- Python-面向对象
面向过程变成:函数式变成,C程序等 面向对象编程:C++,Java,Python等 类和对象: 类:是对事物的抽象,比如人类.球类 对象:是类的一个实例,比如足球.篮球 实例说明: 球类可以对 ...
- ExtJS客户端代理
代理(proxy)分为两大类:客户端代理和服务器端代理.客户端代理主要完成与浏览器本地存取数据相关的工作,服务器端代理则是通过发送请求,从服务器端获取数据.根据各自获取数据的方式,客户端代理和服务器端 ...
- 前端优化 - 打开速度1s
先看一下网页的加载流程: 1.解析html结构2.加载外部脚本和样式表文件3.解析并执行脚本(脚本会阻塞页面的加载)4.DOM树构建完成 (DOMContentLoaded)5.加载图片等外部文件6. ...
- 用Redis实现Session功能
0.什么是Redis Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API ---维基百科 1.与其他用户状态保存方 ...
- shixi
1. ./statsite -f statsite.conf &(后台): 2. ps ax|grep ** 3. bg fg 4.chmod +x start.sh 5.tcpdump ud ...
- Java中是否可以调用一个类中的main方法?
前几天面试的时候,被问到在Java中是否可以调用一个类中的main方法?回来测试了下,答案是可以!代码如下: main1中调用main2的主方法 package org.fiu.test; impor ...