给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strongly Connected)。如下图中,任意两个顶点都是互相可达的。

对于无向图,判断图是否是强连通的,可以直接使用深度优先搜索(DFS)广度优先搜索(BFS),从任意一个顶点出发,如果遍历的结果包含所有的顶点,则说明图是强连通的。

而对于有向图,则不能使用 DFS 或 BFS 进行直接遍历来判断。如下图中,如果从顶点 0 开始遍历则可判断是强连通的,而如果从其它顶点开始遍历则无法抵达所有节点。

那么,该如何判断有向图的强连通性呢?

实际上,解决该问题的较好的方式就是使用强连通分支算法(SCC:Strongly Connected Components),可以在 O(V+E) 时间内找到所有的 SCC。如果 SCC 的数量是 1,则说明整个图是强连通的。

有向图 G = (V, E) 的一个强连通分支是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的。

实现 SCC 的一种算法就是 Kosaraju 算法。Kosaraju 算法基于深度优先搜索(DFS),并对图进行两次 DFS 遍历,算法步骤如下:

  1. 初始化设置所有的顶点为未访问的;
  2. 从任意顶点 v 开始进行 DFS 遍历,如果遍历结果没有访问到所有顶点,则说明图不是强连通的;
  3. 置换整个图(Reverse Graph);
  4. 设置置换后的图中的所有顶点为未访问过的;
  5. 从与步骤 2 中相同的顶点 v 开始做 DFS 遍历,如果遍历没有访问到所有顶点,则说明图不是强连通的,否则说明图是强连通的。

Kosaraju 算法的思想就是,如果从顶点 v 可以抵达所有顶点,并且所有顶点都可以抵达 v,则说明图是强连通的。

 using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
Graph g = new Graph();
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , ); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
Console.WriteLine(); Console.WriteLine("Is graph strongly connected: {0}", g.Kosaraju()); Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } } public IEnumerable<Edge> Edges
{
get { return _adjacentEdges.Values.SelectMany(e => e); }
} public int EdgeCount { get { return this.Edges.Count(); } } public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} public bool Kosaraju()
{
// Step 1: Mark all the vertices as not visited (For first DFS)
bool[] visited = new bool[VertexCount];
for (int i = ; i < visited.Length; i++)
visited[i] = false; // Step 2: Do DFS traversal starting from first vertex.
DFS(, visited); // If DFS traversal doesn’t visit all vertices, then return false.
for (int i = ; i < VertexCount; i++)
if (visited[i] == false)
return false; // Step 3: Create a reversed graph
Graph reversedGraph = Transpose(); // Step 4: Mark all the vertices as not visited (For second DFS)
for (int i = ; i < visited.Length; i++)
visited[i] = false; // Step 5: Do DFS for reversed graph starting from first vertex.
// Staring Vertex must be same starting point of first DFS
reversedGraph.DFS(, visited); // If all vertices are not visited in second DFS, then
// return false
for (int i = ; i < VertexCount; i++)
if (visited[i] == false)
return false; return true;
} void DFS(int v, bool[] visited)
{
visited[v] = true; if (_adjacentEdges.ContainsKey(v))
{
foreach (var edge in _adjacentEdges[v])
{
if (!visited[edge.End])
DFS(edge.End, visited);
}
}
} Graph Transpose()
{
Graph g = new Graph(this.VertexCount); foreach (var edge in this.Edges)
{
g.AddEdge(edge.End, edge.Begin, edge.Weight);
} return g;
}
}
}
}

参考资料

本篇文章《Kosaraju 算法检测有向图的强连通性》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。

Kosaraju 算法检测有向图的强连通性的更多相关文章

  1. 【模板】Tarjan算法与有向图的强连通性

    概念 流图 给定一个有向图G= (V,E),若存在r∈V满足,满足从r出发能够到达V中所有的点,则称G是一个流图,记为(G,r),其中r是流图的源点. 流图的搜索树 在一个流图(G,r)上从r出发,进 ...

  2. 强联通分量之kosaraju算法

    首先定义:强联通分量是有向图G=(V, E)的最大结点集合,满足该集合中的任意一对结点v和u,路径vu和uv同时存在. kosaraju算法用来寻找强联通分量.对于图G,它首先随便找个结点dfs,求出 ...

  3. 图解:有向环、拓扑排序与Kosaraju算法

    图算法第三篇 图解:有向环.拓扑排序与Kosaraju算法 首先来看一下今天的内容大纲,内容非常多,主要是对算法思路与来源的讲解,图文并茂,希望对你有帮助~ 1.有向图的概念和表示 概念 有向图与上一 ...

  4. 7-6-有向图强连通分量的Kosaraju算法-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版

    课本源码部分 第7章  图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版>(严 ...

  5. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  6. Kosaraju算法---强联通分量

    1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对 ...

  7. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  8. 图论-求有向图的强连通分量(Kosaraju算法)

    求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...

  9. (转)求有向图的强连通分量个数(kosaraju算法)

    有向图的连通分量的求解思路 kosaraju算法 逛了很多博客,感觉都很难懂,终于找到一篇能看懂的,摘要记录一下 原博客https://www.cnblogs.com/nullzx/p/6437926 ...

随机推荐

  1. Delphi控件之---UpDown以及其与TEdit的配合使用(比如限制TEdit只能输入数字,还有Object Inspector之组件属性的介绍)

    最近在开发中使用到了UpDown这个控件,但是因为之前没有使用过,所以很不熟悉,于是就编写了一个简单的demo来学习UpDown以及其结合TEdit的用法. 初步的常用功能的简介 目前(2015.08 ...

  2. Python 学习笔记(6)--常用模块(2)

    一.下载安装 下载安装有两种方式: yum\pip\apt-get 或者源码 下载源码 解压源码 进入目录 编译源码 python setup.py build 安装源码 python setup.p ...

  3. Datazen配置

    Datazen是被微软收购的移动端全平台的数据展现解决方案.此篇主要介绍其服务器端的配置过程. 在上一篇的基础安装完成之后,在浏览器敲入如下地址进入系统的控制面板(留意安装的时候配置的是80 web端 ...

  4. TCP连接的建立和终止

    TCP的简要要说明 标签(空格分隔): TCP 网络编程 Linux 面试 在此输入正文 一.TCP是什么 TCP全称传输控制协议(Transmission Control Protocol).TCP ...

  5. Python-面向对象(类)一

    一.如何创建类 class cls: pass 二.创建方法 构造方法: __init__(self, arg) obj = 类('a1') 普通方法: obj = 类('xxx') obj.普通方法 ...

  6. Node使用multiparty包上传文件

    var multiparty = require('multiparty'); var http = require('http'); var util = require('util'); var ...

  7. wpf 仿QQ图片查看器

    参考博客 WPF下的仿QQ图片查看器 wpf图片查看器,支持鼠标滚动缩放拖拽 实现效果 主要参考的WPF下的仿QQ图片查看器,原博主只给出了部分代码. 没有完成的部分 1.右下角缩略图是原图不是缩略图 ...

  8. JQuery表格插件DataTables 当前页合计功能

    公司项目表格插件使用的是DataTables,最近添加表合计功能,发现百度统一都是如图类型的代码,不知道是配置问题还是怎么了,在我的页面下根本不能用 var addd=0; $(document).r ...

  9. Ruby Gem命令详解

    转自:http://www.jianshu.com/p/728184da1699 Gem介绍: Gem是一个管理Ruby库和程序的标准包,它通过Ruby Gem(如 http://rubygems.o ...

  10. bind模拟

    if (!Function.prototype.bind) { Function.prototype.bind = function(oThis) { if (typeof this !== 'fun ...