给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strongly Connected)。如下图中,任意两个顶点都是互相可达的。

对于无向图,判断图是否是强连通的,可以直接使用深度优先搜索(DFS)广度优先搜索(BFS),从任意一个顶点出发,如果遍历的结果包含所有的顶点,则说明图是强连通的。

而对于有向图,则不能使用 DFS 或 BFS 进行直接遍历来判断。如下图中,如果从顶点 0 开始遍历则可判断是强连通的,而如果从其它顶点开始遍历则无法抵达所有节点。

那么,该如何判断有向图的强连通性呢?

实际上,解决该问题的较好的方式就是使用强连通分支算法(SCC:Strongly Connected Components),可以在 O(V+E) 时间内找到所有的 SCC。如果 SCC 的数量是 1,则说明整个图是强连通的。

有向图 G = (V, E) 的一个强连通分支是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的。

实现 SCC 的一种算法就是 Kosaraju 算法。Kosaraju 算法基于深度优先搜索(DFS),并对图进行两次 DFS 遍历,算法步骤如下:

  1. 初始化设置所有的顶点为未访问的;
  2. 从任意顶点 v 开始进行 DFS 遍历,如果遍历结果没有访问到所有顶点,则说明图不是强连通的;
  3. 置换整个图(Reverse Graph);
  4. 设置置换后的图中的所有顶点为未访问过的;
  5. 从与步骤 2 中相同的顶点 v 开始做 DFS 遍历,如果遍历没有访问到所有顶点,则说明图不是强连通的,否则说明图是强连通的。

Kosaraju 算法的思想就是,如果从顶点 v 可以抵达所有顶点,并且所有顶点都可以抵达 v,则说明图是强连通的。

 using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
Graph g = new Graph();
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , );
g.AddEdge(, , ); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
Console.WriteLine(); Console.WriteLine("Is graph strongly connected: {0}", g.Kosaraju()); Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public IEnumerable<int> Vertices { get { return _adjacentEdges.Keys; } } public IEnumerable<Edge> Edges
{
get { return _adjacentEdges.Values.SelectMany(e => e); }
} public int EdgeCount { get { return this.Edges.Count(); } } public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} public bool Kosaraju()
{
// Step 1: Mark all the vertices as not visited (For first DFS)
bool[] visited = new bool[VertexCount];
for (int i = ; i < visited.Length; i++)
visited[i] = false; // Step 2: Do DFS traversal starting from first vertex.
DFS(, visited); // If DFS traversal doesn’t visit all vertices, then return false.
for (int i = ; i < VertexCount; i++)
if (visited[i] == false)
return false; // Step 3: Create a reversed graph
Graph reversedGraph = Transpose(); // Step 4: Mark all the vertices as not visited (For second DFS)
for (int i = ; i < visited.Length; i++)
visited[i] = false; // Step 5: Do DFS for reversed graph starting from first vertex.
// Staring Vertex must be same starting point of first DFS
reversedGraph.DFS(, visited); // If all vertices are not visited in second DFS, then
// return false
for (int i = ; i < VertexCount; i++)
if (visited[i] == false)
return false; return true;
} void DFS(int v, bool[] visited)
{
visited[v] = true; if (_adjacentEdges.ContainsKey(v))
{
foreach (var edge in _adjacentEdges[v])
{
if (!visited[edge.End])
DFS(edge.End, visited);
}
}
} Graph Transpose()
{
Graph g = new Graph(this.VertexCount); foreach (var edge in this.Edges)
{
g.AddEdge(edge.End, edge.Begin, edge.Weight);
} return g;
}
}
}
}

参考资料

本篇文章《Kosaraju 算法检测有向图的强连通性》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。

Kosaraju 算法检测有向图的强连通性的更多相关文章

  1. 【模板】Tarjan算法与有向图的强连通性

    概念 流图 给定一个有向图G= (V,E),若存在r∈V满足,满足从r出发能够到达V中所有的点,则称G是一个流图,记为(G,r),其中r是流图的源点. 流图的搜索树 在一个流图(G,r)上从r出发,进 ...

  2. 强联通分量之kosaraju算法

    首先定义:强联通分量是有向图G=(V, E)的最大结点集合,满足该集合中的任意一对结点v和u,路径vu和uv同时存在. kosaraju算法用来寻找强联通分量.对于图G,它首先随便找个结点dfs,求出 ...

  3. 图解:有向环、拓扑排序与Kosaraju算法

    图算法第三篇 图解:有向环.拓扑排序与Kosaraju算法 首先来看一下今天的内容大纲,内容非常多,主要是对算法思路与来源的讲解,图文并茂,希望对你有帮助~ 1.有向图的概念和表示 概念 有向图与上一 ...

  4. 7-6-有向图强连通分量的Kosaraju算法-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版

    课本源码部分 第7章  图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版>(严 ...

  5. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  6. Kosaraju算法---强联通分量

    1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对 ...

  7. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  8. 图论-求有向图的强连通分量(Kosaraju算法)

    求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...

  9. (转)求有向图的强连通分量个数(kosaraju算法)

    有向图的连通分量的求解思路 kosaraju算法 逛了很多博客,感觉都很难懂,终于找到一篇能看懂的,摘要记录一下 原博客https://www.cnblogs.com/nullzx/p/6437926 ...

随机推荐

  1. WPF中为ListView动态绑定数据(可参考)

    GridView gv = new GridView(); DataTable dt = fieldManageBLL.GetFieldManage(moduleName); for(int i=0; ...

  2. #pg学习#postgresql的安装

    1.按照官网给的步骤编译安装(Mac安装是比较容易的,相比Liunx) cd /Users/renlipeng/Desktop/postgresql-9.5.1 ./configure --prefi ...

  3. 《转》 浅谈C# 多态的魅力(虚方法,抽象,接口实现)

    前言:我们都知道面向对象的三大特性:封装,继承,多态.封装和继承对于初学者而言比较好理解,但要理解多态,尤其是深入理解,初学者往往存在有很多困惑,为什么这样就可以?有时候感觉很不可思议,由此,面向对象 ...

  4. BestCoder#49

    Untitled Accepts: 504 Submissions: 1542 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/6 ...

  5. 在CentOS 7中安装与配置JDK8

    参考命令:http://www.jb51.net/os/RedHat/73016.html来进行安装 安装说明 系统环境:centos7 安装方式:rpm安装 软件:jdk-8u25-linux-x6 ...

  6. HTML解析器HtmlAgilityPack的一些使用总结(C#)

    哎~本来这些总结是作为使用时的快速备注,但是用不上了.实际应用当中HtmlAgilityPack的可靠性不太稳定,一主要问题是:-> 一些字符会出现乱码或者变成'?',如韩语字符.由于我是已经有 ...

  7. [RxJava^Android]项目经验分享 --- 递归实现

    介绍一下业务逻辑:获取接口数据,根据接口内容判断是否需要继续获取数据. 本文使用递归思路,通过RxJava来实现此功能,获取数据的Observable直接用模拟的Observable.just()替代 ...

  8. SpringMVC4零配置--web.xml

    servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置. ServletContainerInitiali ...

  9. dell笔记本三个系统,ubuntu16.04更新,boot分区容量不足解决办法

    本人自己dell物理机上安装windows 7 .centos 1704 和ubuntu1604 三个系统的,分区当时没有使用lVM,boot单独挂/dev/sda7 分区,只有200M,随着2次li ...

  10. java-通过JDBC操作数据库

    一.加载驱动 这里我们用Class.forname();来加载驱动,用此语句会提示排除异常. Class.forName("com.mysql.jdbc.Driver"); 括号中 ...