传送门

分析

我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚举是哪一个点重合然后减掉即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long a[],b[],d[],sum,d1[];
long long S1[],S2[],S11[],S21[];
map<long long,long long>id;
inline void add(long long le,long long ri,long long wh,long long pl,long long k){
d[wh]+=k;
if(le==ri)return;
long long mid=(le+ri)>>;
if(mid>=pl)add(le,mid,wh<<,pl,k);
else add(mid+,ri,wh<<|,pl,k);
return;
}
inline void add2(long long le,long long ri,long long wh,long long pl,long long k){
d1[wh]+=k;
if(le==ri)return;
long long mid=(le+ri)>>;
if(mid>=pl)add2(le,mid,wh<<,pl,k);
else add2(mid+,ri,wh<<|,pl,k);
return;
}
inline long long q(long long le,long long ri,long long x,long long y,long long wh){
if(x>y)return ;
if(le>=x&&ri<=y)return d[wh];
long long mid=(le+ri)>>,ans=;
if(mid>=x)ans+=q(le,mid,x,y,wh<<);
if(mid<y)ans+=q(mid+,ri,x,y,wh<<|);
return ans;
}
inline long long q2(long long le,long long ri,long long x,long long y,long long wh){
if(x>y)return ;
if(le>=x&&ri<=y)return d1[wh];
long long mid=(le+ri)>>,ans=;
if(mid>=x)ans+=q2(le,mid,x,y,wh<<);
if(mid<y)ans+=q2(mid+,ri,x,y,wh<<|);
return ans;
}
int main(){
long long n,m,i,j,k,sum1=,sum2=;
scanf("%lld",&n);
id.clear();
for(i=;i<=n;i++)scanf("%lld",&a[i]),b[i]=a[i];
sort(b+,b+n+);
for(i=;i<=n;i++)
if(!id[b[i]])
id[b[i]]=++sum;
for(i=;i<=n;i++){
long long x=q(,sum,,id[a[i]]-,),y=q(,sum,id[a[i]]+,sum,);
sum1+=x;sum2+=y;
add(,sum,,id[a[i]],);
}
long long Ans=(long long)sum1*sum2;
memset(d,,sizeof(d));
memset(d1,,sizeof(d1));
for(i=;i<=n;i++){
S1[i]=q(,sum,,id[a[i]]-,);
S11[i]=q(,sum,id[a[i]]+,sum,);
add(,sum,,id[a[i]],);
}
for(i=n;i>;i--){
S2[i]=q2(,sum,,id[a[i]]-,);
S21[i]=q2(,sum,id[a[i]]+,sum,);
add2(,sum,,id[a[i]],);
}
for(i=;i<=n;i++)
Ans-=(long long)S1[i]*S2[i]+(long long)S11[i]*S1[i]+(long long)S21[i]*S2[i]+(long long)S21[i]*S11[i];
printf("%lld\n",Ans);
return ;
}

ZROI2018提高day6t1的更多相关文章

  1. ZROI2018提高day9t1

    传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...

  2. ZROI2018提高day6t2

    传送门 分析 将所有字母分别转化为1~26,之后将字符串的空位补全为0,?设为-1,我们设dp[p][c][le][ri]表示考虑le到ri个字符串且从第p位开始考虑,这一位最小填c的方案数,具体转移 ...

  3. ZROI2018提高day5t3

    传送门 分析我们可以根据性质将这个序列构造成一个环:0,a[1~n],0,a[n~1] 这中间的0是为了起间隔作用的. 我们又知道b[i]=a[i-1]^a[i+1] c[i]=b[i-1]^b[i+ ...

  4. ZROI2018提高day5t2

    传送门 分析 考场上傻了,写了个树剖还莫名weila...... 实际就是按顺序考虑每个点,然后从他往上找,一边走一边将走过的边染色,如果走到以前染过色的边就停下.对于每一个a[i]的答案就是之前走过 ...

  5. ZROI2018提高day5t1

    传送门 分析 我们不难将条件转换为前缀和的形式,即 pre[i]>=pre[i-1]*2,pre[i]>0,pre[k]=n. 所以我们用dp[i][j]表示考虑到第i个数且pre[i]= ...

  6. ZROI2018提高day4t3

    传送门 分析 我们假设如果一个点是0则它的值为-1,如果一个点是1则值为1,则一个区间的答案便是max(pre[i]+sur[i]),这里的pre[i]表示此区间i点和它之前的的前缀的最大值,sur[ ...

  7. ZROI2018提高day4t2

    传送门 分析 我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个 ...

  8. ZROI2018提高day4t1

    传送门 分析 一道贪心题,我们用两个优先队列分别维护卖出的物品的价格和买入但没有卖出的物品的价格,然后逐一考虑每一个物品.对于每一个物品如果他比卖出的物品中的最低个价格,则改将现在考虑的物品卖出,将之 ...

  9. ZROI2018提高day3t3

    传送门 分析 我们对于每一个可以匹配的字符都将其从栈中弹出,然后他的哈希值就是现在栈中的字符哈希一下.然后我们便可以求出对于哪些位置它们的哈希值是一样的,即它们的状态是一致的.而这些点可以求出它们的贡 ...

随机推荐

  1. ps-基础知识

    一.常用名词及几个常见控制面板. 二.工具栏中各工具的名称及使用方法. 三.新建文件的流程和注意事项. 四.光与色的基础知识

  2. nginx配置允许指定域名下所有二级域名跨域请求

    核心原理是根据请求域名匹配是否是某域名的二级域名判断是否添加允许跨越头. #畅游www server { listen 8015; server_name test-tl.changyou.com; ...

  3. OpenCV - Android Studio 2.2 中利用CAMKE进行OpenCV的NDK开发

    我在http://www.cnblogs.com/fx-blog/p/8206737.html一文中提到了如何在Android Studio中Java层导入OpenCV(包含opencv_contri ...

  4. 6、Selenium+Python登录案例 -- Github

    一:登录 1.指定浏览器,打开网址:https://github.com/login 2.设置等待时间: time.sleep(3) or driver.implicitly_wait(3) 3.输入 ...

  5. Attribute注解(用于判断权限)

    一  Attribute原理: Attribute注解,是附加上方法.属性.类等上面的标签,可以通过方法的GetCustomAttribute获得粘贴的这个Attribute对象通过反射调用到粘贴到属 ...

  6. SpringBoot自动化配置之三:深入SpringBoot:自定义EnableAutoConfiguration

    前言 上面几篇文章介绍了SpringFramework的一些原理,这里开始介绍一下SpringBoot,并通过自定义一些功能来介绍SpringBoot的原理.SpringBoot在SpringFram ...

  7. PHP类(三)-类的封装

    设置私有成员 使用private关键字来设置私有成员,完成对成员的封装,封装后的成员在对象的外部不能被访问,如果访问会出现错误,在对象的内部能访问被封装的成员属性和方法. <?php class ...

  8. HOOK技术演示

    前提:64位系统需要用64位编译dll 一.首先创建一个dll工程,取名为KeyboardHookDll,代码如下: // KeyboardHookDll.cpp : 定义 DLL 应用程序的导出函数 ...

  9. 第十六章 Velocity工作原理解析(待续)

    Velocity总体架构 JJTree渲染过程解析 事件处理机制 常用优化技巧 与JSP比较 设计模式解析之合成模式 设计模式解析之解释器模式

  10. Oracle的REGEXP_REPLACE函数简单用法

    转载:http://blog.csdn.net/itmyhome1990/article/details/50380718