Description

A flowerbed has many flowers and two fountains.

You can adjust the water pressure and set any values r1(r1 ≥ 0) and r2(r2 ≥ 0), giving the distances at which the water is spread from the first and second fountain respectively. You have to set such r1 and r2 that all the flowers are watered, that is, for each flower, the distance between the flower and the first fountain doesn't exceed r1, or the distance to the second fountain doesn't exceed r2. It's OK if some flowers are watered by both fountains.

You need to decrease the amount of water you need, that is set such r1 and r2 that all the flowers are watered and the r12 + r22 is minimum possible. Find this minimum value.

Input

The first line of the input contains integers nx1, y1, x2, y2 (1 ≤ n ≤ 2000,  - 10^7 ≤ x1, y1, x2, y2 ≤ 10^7) — the number of flowers, the coordinates of the first and the second fountain.

Next follow n lines. The i-th of these lines contains integers xi and yi ( - 10^7 ≤ xi, yi ≤ 10^7) — the coordinates of the i-th flower.

It is guaranteed that all n + 2 points in the input are distinct.

Output

Print the minimum possible value r1^2 + r2^2. Note, that in this problem optimal answer is always integer.

Sample test(s)
input
2 -1 0 5 3
0 2
5 2
output
6
input
4 0 0 5 0
9 4
8 3
-1 0
1 4
output
33
Note

The first sample is (r1^2 = 5, r2^2 = 1):

The second sample is (r1^2 = 1, r22 = 3^2):

首先,我们保存每一个花坛与两个喷泉的距离(平方),记为r1 r2

我们以其中r1的第一个距离作为开始。开始往后面遍历,如果发现后面有距离超过起始点,说明有没有覆盖的

那么把超过点的放在r2的覆盖的范围内,加起来。遍历完毕取最小值

#include<stdio.h>
//#include<bits/stdc++.h>
#include<string.h>
#include<iostream>
#include<math.h>
#include<sstream>
#include<set>
#include<queue>
#include<map>
#include<vector>
#include<algorithm>
#include<limits.h>
#define inf 0x7fffffff
#define INFL 0x7fffffffffffffff
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define ULL unsigned long long
using namespace std;
pair<LL,LL> q[2002];
int main()
{
LL n,x1,y1,x2,y2;
LL x,y;
cin>>n>>x1>>y1>>x2>>y2;
for(int i=0;i<n;i++)
{
cin>>x>>y;
q[i+1].first=(x-x1)*(x-x1)+(y-y1)*(y-y1);
q[i+1].second=(x-x2)*(x-x2)+(y-y2)*(y-y2);
// cout<<q[i+1].first<<" "<<q[i+1].second<<endl;
}
LL sum=INFL;
for(int i=0;i<=n;i++)
{
LL ans_1,ans_2=0;
ans_1=q[i].first;
// cout<<q[i].first<<"A"<<endl;
for(int j=1;j<=n;j++)
{
if(q[j].first>ans_1)
{
ans_2=max(ans_2,q[j].second);
}
}
// cout<<ans_2<<"B"<<endl;
// cout<<ans_1+ans_2<<"C"<<endl;
sum=min(sum,ans_1+ans_2);
// cout<<sum<<"C"<<endl;
}
cout<<sum<<endl;
return 0;
}

  

Codeforces Round #340 (Div. 2) C的更多相关文章

  1. [Codeforces Round #340 (Div. 2)]

    [Codeforces Round #340 (Div. 2)] vp了一场cf..(打不了深夜的场啊!!) A.Elephant 水题,直接贪心,能用5步走5步. B.Chocolate 乘法原理计 ...

  2. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法

    E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...

  3. Codeforces Round #340 (Div. 2) C. Watering Flowers 暴力

    C. Watering Flowers 题目连接: http://www.codeforces.com/contest/617/problem/C Descriptionww.co A flowerb ...

  4. Codeforces Round #340 (Div. 2) B. Chocolate 水题

    B. Chocolate 题目连接: http://www.codeforces.com/contest/617/problem/D Descriptionww.co Bob loves everyt ...

  5. Codeforces Round #340 (Div. 2) A. Elephant 水题

    A. Elephant 题目连接: http://www.codeforces.com/contest/617/problem/A Descriptionww.co An elephant decid ...

  6. Codeforces Round #340 (Div. 2) D. Polyline 水题

    D. Polyline 题目连接: http://www.codeforces.com/contest/617/problem/D Descriptionww.co There are three p ...

  7. 「日常训练」Watering Flowers(Codeforces Round #340 Div.2 C)

    题意与分析 (CodeForces 617C) 题意是这样的:一个花圃中有若干花和两个喷泉,你可以调节水的压力使得两个喷泉各自分别以\(r_1\)和\(r_2\)为最远距离向外喷水.你需要调整\(r_ ...

  8. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 【莫队算法 + 异或和前缀和的巧妙】

    任意门:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

  9. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

  10. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number (莫队)

    题目链接:http://codeforces.com/contest/617/problem/E 题目大意:有n个数和m次查询,每次查询区间[l, r]问满足ai ^ ai+1 ^ ... ^ aj ...

随机推荐

  1. How to watch property in attrs of directive

    Q: I have a controller that has a counter that changes from time to time. That counter is tied to an ...

  2. Java构造函数中调用构造函数

    在Java中,当为一个类创建了多个构造函数时,有时想在一个构造函数中调用另一个构造函数以减少代码量.这时可以使用this关键字来实现. 通常,当使用this关键字时,它意味着"这个对象&qu ...

  3. JavaWeb 没用

    Servlet的生命周期 初始化:Web容器加载servlet,调用innit(),只执行一次 处理业务: 请求到达时,运行service方法 并调用相应的doget或者dopost方法.  可执行多 ...

  4. php学习笔记-continue和break

    这两个关键字经常被用在循环中,但作用是完全不同的. 在循环中遇到continue这个单词的时候一定要理解为skip,跳过或者略过,啥意思?就是跳过本次循环,后面的循环继续走起来,老铁. break是说 ...

  5. JAVA隐藏鼠标的方法

    JAVA隐藏鼠标的方法 2012年06月03日 19:13:21 阅读数:2436 JAVA隐藏鼠标光标,可以有2种方法. 都是通过如下语句重新设置光标 Toolkit.getDefaultToolk ...

  6. 深、浅copy

    深.浅copy多用于列表 浅copy:第一层中不变的数据是独立的,可变类型元素指向同一块内存地址 l1 = [1,2,3,["a","b"]] l2 = l1. ...

  7. Hibernate 处理查询 in 字句

    from : http://blog.csdn.net/wodestudy/article/details/38200421 在处理hibernate的实体查询,一般可以采用多种方式处理复杂的查询,比 ...

  8. SLAM(Linux版)

    之前的那个是Windows版,现在终于发现Windows运行slam是不行的,多么痛的领悟. 本书系统地介绍了视觉SLAM所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动.非线性优化 ...

  9. 自定义MVC的Helper扩展方法 转 Insus.NET

    记得在开发ASP.NET时候,也经常性使用C#可以写自己义的扩展方法,如: http://www.cnblogs.com/insus/p/3154363.html 或http://www.cnblog ...

  10. JSP或者说是JSP翻译引擎

    JSP最终输出就是底层去继承Servlet,然后输出JSP页面上的内容而已,不明白了看第六条. 页面java脚本,也就是JSP页面上写JAVA代码如下: