【BZOJ4184】shallot

Description

小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏。

每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且
让小葱从自己手中的小葱苗里选出一些小葱苗使得选出的小葱苗上的数字的异或和最大。
这种小问题对于小葱来说当然不在话下,但是他的身边没有电脑,于是他打电话给同为Oi选手的你,你能帮帮他吗?
你只需要输出最大的异或和即可,若小葱手中没有小葱苗则输出0。

Input

第一行一个正整数n表示总时间;第二行n个整数a1,a2...an,若ai大于0代表给了小葱一颗数字为ai的小葱苗,否则代表从小葱手中拿走一颗数字为-ai的小葱苗。

Output

输出共n行,每行一个整数代表第i个时刻的最大异或和。

Sample Input

6
1 2 3 4 -2 -3

Sample Output

1
3
3
7
7
5

HINT

N<=500000,Ai<=2^31-1

题解:因为线性基不支持删除操作,所以我们要考虑离线的做法

有一个性质很重要:每个数都存在于一段连续的区间,所以我们可以用map来记录区间的起始位置和结束位置,然后用线段树来实现区间操作。

具体方法是给线段树上的每一个节点都开一个vector,vector里维护的就是线性基,每次更新到一整块区间就在线性基中加入这个数,并维护线性基。查询的时候我们将每个点到根的路径上的所有的线性基再开一个vector扔进去,并维护线性基,然后贪心求出最大值就行了。

一开始感觉空间复杂度有点吓人,不过当我TLE时才发现其实内存完全不虚。

然后发现,算法的瓶颈其实在于查询操作,所以我们不能每次都进行单点查询,而是遍历整棵线段树,并输出所有的答案。

拍极限数据的时候我跑了6、7秒感觉GG,但是测了一下标程才发现标程比我的还慢,所以果断AC。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#include <map>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=500010;
int n,m;
int last[maxn],A[maxn];
map<int,int> mp;
struct line
{
vector<int> v;
int gauss(int x)
{
int i;
for(i=0;i<v.size();i++) if((x^v[i])<x) x^=v[i];
if(x)
{
v.push_back(x);
for(i=v.size()-1;i;i--) if(v[i]>v[i-1]) swap(v[i],v[i-1]);
}
return x;
}
int getmax()
{
int i,ret=0;
for(i=0;i<v.size();i++) if((ret^v[i])>ret) ret^=v[i];
return ret;
}
};
line s[maxn<<2],emp;
void updata(int l,int r,int x,int a,int b,int c)
{
if(a<=l&&r<=b)
{
s[x].gauss(c);
return ;
}
int mid=l+r>>1;
if(a<=mid) updata(l,mid,lson,a,b,c);
if(b>mid) updata(mid+1,r,rson,a,b,c);
}
void query(int l,int r,int x,line q)
{
for(int i=0;i<s[x].v.size();i++) q.gauss(s[x].v[i]);
if(l==r)
{
printf("%d\n",q.getmax());
return ;
}
int mid=l+r>>1;
query(l,mid,lson,q),query(mid+1,r,rson,q);
}
int main()
{
scanf("%d",&m);
int i,a;
for(i=1;i<=m;i++)
{
scanf("%d",&A[i]);
if(A[i]<0) a=mp[-A[i]],last[a]=i-1;
else mp[A[i]]=i;
}
for(i=1;i<=m;i++)
{
if(A[i]<0) continue;
if(!last[i]) last[i]=m;
updata(1,m,1,i,last[i],A[i]);
}
query(1,m,1,emp);
return 0;
}

【BZOJ4184】shallot 线段树+vector+线性基的更多相关文章

  1. BZOJ4184:shallot(线段树分治,线性基)

    Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且 让小葱 ...

  2. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  3. bzoj 4184 shallot 时间线建线段树+vector+线性基

    题目大意 n个时间点 每个时间点可以插入一个权值或删除一个权值 求每个时间点结束后异或最大值 分析 异或最大值用线性基 但是线性基并不支持删除操作 我们可以对时间线建一棵线段树 离线搞出每个权值出现的 ...

  4. bzoj 4184 shallot——线段树分治+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4184 本来想了可持久化trie,不过空间是 nlogn (出一个节点的时候把 tot 复原就 ...

  5. bzoj 4184: shallot (线段树维护线性基)

    题面 \(solution:\) 这一题绝对算的上是一道经典的例题,它向我们诠释了一种新的线段树维护方式(神犇可以跳过了).像这一类需要加入又需要维护删除的问题,我们曾经是遇到过的像莫对,线段树... ...

  6. $CF938G\ Shortest\ Path\ Queries$ 线段树分治+线性基

    正解:线段树分治+线性基 解题报告: 传送门$QwQ$ 考虑如果只有操作3,就这题嘛$QwQ$ 欧克然后现在考虑加上了操作一操作二 于是就线段树分治鸭 首先线段树叶子节点是询问嘛这个不用说$QwQ$. ...

  7. [BZOJ4184]shallot 线段树+线性基

    链接 题意:给你每个数字出现的时间和消失的时间,求每个时刻最大异或和 题解 按照时间建立线段树,线段树每个节点开个vector存一下这个时间区间有哪些数,然后递归进入的时候加入线性基,开一个栈记录一下 ...

  8. LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset

    题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...

  9. 【luogu3733】【HAOI2017】 八纵八横 (线段树分治+线性基)

    Descroption 原题链接 给你一个\(n\)个点的图,有重边有自环保证连通,最开始有\(m\)条固定的边,要求你支持加边删边改边(均不涉及最初的\(m\)条边),每一次操作都求出图中经过\(1 ...

随机推荐

  1. iOS小技巧 - 为按钮设置不同状态下的背景色

    我们知道直接在Storyboard中设置按钮的背景色是不能根据不同状态来更改的,那问题来了,如果我们需要在不同的状态下(比如按钮没有被按下或者被按下),使得按钮呈现不同的背景色怎么办? 比如上图左边是 ...

  2. OpenStack二三事(1)

    更新系列不是教材,不说教,不讲道理,仅仅记录. OpenStack在云计算领域大热,没有理由不去了解它. 先说说我对OpenStack的感觉,开源.廉价.麻烦.大家都在用,在了解开发流程后.OpenS ...

  3. react-native-router-flux 页面跳转与传值

    1.正向跳转假设情景:从Home页跳转到Profile页面,Profile场景的key值为profile 不带参数: Actions.profile 带参数: Actions.profile({'ke ...

  4. h5+ 管理设备信息

    Device模块管理设备信息,用于获取手机设备的相关信息,如IMEI.IMSI.型号.厂商等.通过plus.device获取设备信息管理对象. 1.属性 1.1.imei: 设备的国际移动设备身份码, ...

  5. Archlinux风扇设置

    在笔记本(ThinkPad T440)连续两天因过热而死机后, 对内核的风扇控制算法果断失去信心. 风扇的用户层控制接口是 /proc/acpi/ibm/fan, 但为防止用户控制不当烧坏机器, 默认 ...

  6. Calculation 2-欧拉函数的运用

    Calculation 2 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit ...

  7. sql server 执行大.sql文件

    打开cmd执行:osql -S 127.0.0.1 -U sa -P sa -i d:\test.sql 执行后会提示输入密码.

  8. SQLServer中存储过程StoredProcedure创建及C#调用(转)

    此文作为入门了解用,转自http://www.2cto.com/database/201502/378260.html 存储过程就是已经编译好的.优化过的放在数据库服务器中的一些SQL语句:可供应用程 ...

  9. ClassLibary和WPF User Control LIbary和WPF Custom Control Libary的异同

    说来惭愧,接触WPF这么长时间了,今天在写自定义控件时遇到一个问题:运行界面中并没有显示自定义控件,经调试发现原来没有加载Themes中的Generic.xaml. 可是为什么在其他solution中 ...

  10. Spring4整合Hibernate5时不能自动生成表结构

    © 版权声明:本文为博主原创文章,转载请注明出处 1.问题描述: Spring4整合Hibernate5时,不再使用hibernate.cfg.xml,将其内容整合到Spring配置文件中,启动后不能 ...