【BZOJ3316】JC loves Mkk 分数规划+单调队列
【BZOJ3316】JC loves Mkk
Description
.jpg)
Input
第1行,包含三个整数。n,L,R。
第2行n个数,代表a[1..n]。
Output
仅1行,表示询问答案。
如果答案是整数,就输出整数;否则,输出既约分数“P/Q”来表示。
Sample Input
3 1 2 4 5
Sample Output
HINT
1≤L≤R≤n≤10^5,0≤ai≤10^9,保证问题有解,数据随机生成
题解:直接二分答案,然后每个糖果的权值都变成a[i]-mid,我们需要找到一段长度在[L,R]中的区间使得权值和>=0。然后我们将区间和转变成前缀相减的形式,所以只需要找到s[j]<s[i],j<i这样的i,j就行了。那么对于每个s[i],我们肯定是贪心地选取前面最小的s[j],这个用单调队列维护即可。
但是要求区间长度是偶数,所以我们需要开对奇偶各开一个单调队列。同时要求答案是分数,这个是需要再最后算一下就行了。
#include <cstdio>
#include <cstring>
#include <iostream>
typedef long long ll;
using namespace std;
const int maxn=100010;
int n,L,R,h1,t1,h2,t2;
ll ans1,ans2,g;
ll A[maxn<<1],S[maxn<<1];
double v[maxn<<1],s[maxn<<1];
int q1[maxn<<1],q2[maxn<<1];
ll gcd(ll a,ll b)
{
return (!b)?a:gcd(b,a%b);
}
bool check(double x)
{
int i;
for(i=1;i<=n<<1;i++) v[i]=A[i]-x,s[i]=s[i-1]+v[i];
h1=h2=t1=1,t2=0,q1[1]=0;
for(i=L;i<=n<<1;i++)
{
while(h1<=t1&&q1[h1]<i-R) h1++;
while(h2<=t2&&q2[h2]<i-R) h2++;
if(!(i&1)&&h1<=t1&&s[q1[h1]]<=s[i])
{
ans1=S[i]-S[q1[h1]],ans2=i-q1[h1],g=gcd(ans1,ans2),ans1/=g,ans2/=g;
return 1;
}
if((i&1)&&h2<=t2&&s[q2[h2]]<=s[i])
{
ans1=S[i]-S[q2[h2]],ans2=i-q2[h2],g=gcd(ans1,ans2),ans1/=g,ans2/=g;
return 1;
}
if(!((i-L+1)&1))
{
while(h1<=t1&&s[q1[t1]]>=s[i-L+1]) t1--;
q1[++t1]=i-L+1;
}
else
{
while(h2<=t2&&s[q2[t2]]>=s[i-L+1]) t2--;
q2[++t2]=i-L+1;
}
}
return 0;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),L=rd(),R=rd();
int i;
double l=1<<30,r=0,mid;
for(i=1;i<=n;i++) A[i]=A[i+n]=rd(),l=min(l,(double)A[i]),r=max(r,(double)A[i]);
for(i=1;i<=n<<1;i++) S[i]=S[i-1]+A[i];
for(i=1;i<=50;i++)
{
mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%lld/%lld",ans1,ans2);
return 0;
}
【BZOJ3316】JC loves Mkk 分数规划+单调队列的更多相关文章
- BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列
BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的 ...
- P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表
P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...
- bzoj3316 JC loves Mkk题解
3316: JC loves Mkk Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 979 Solved: 316[Submit][Status][Di ...
- bzoj3316: JC loves Mkk(单调队列+分数规划)
Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整数,就输出整数:否则,输出既约分数“P/Q”来 ...
- 【BZOJ 3316】JC loves Mkk 01分数规划+单调队列
单调栈不断吞入数据维护最值,数据具有单调性但不保证位置为其排名,同时可以按照进入顺序找出临近较值单调队列队列两端均可删除数据但只有队末可以加入数据,仍然不断吞入数据但同时可以额外刨除一些不符合条件的数 ...
- bzoj3316: JC loves Mkk
Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整数,就输出整数:否则,输出既约分数“P/Q”来 ...
- BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)
5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 79 Solved: 58[Sub ...
- [BZOJ4476][JSOI2015]送礼物[分数规划+单调队列]
题意 题目链接 分析 分数规划之后可以得到式子:\(max-min-r*mid+l*mid\geq k*mid\) . 贪心选择,肯定区间的端点是极小或者极大值.特殊处理区间长度 \(\leq L\) ...
- BZOJ4476 JSOI2015送礼物(分数规划+单调队列)
看到这个式子当然先二分答案.得max-min-(j-i+k)ans>=0. 显然max-min相同的情况下所选区间长度越短越好,所以max和min都应该取在边界.那么实际上我们根本不用管端点是否 ...
随机推荐
- C++ 获取URL图片、html文件,CInternetSession 【转】
http://blog.csdn.net/gnixuyil/article/details/7688439 获取网络图片 CString URL="http://www.google.com ...
- ES6中的Map集合(与java里类似)
Set类型可以用来处理列表中的值,但是不适用于处理键值对这样的信息结构.ES6也添加了Map集合来解决类似的问题 一.Map集合 JS的对象(Object),本质上是键值对的集合(Hash结构),但是 ...
- HDFS删除并清空回收站
删除文件并放入回收站: hdfs dfs -rm -f /path 删除文件不放入回收站: hdfs dfs -rm -f -skipTrash /path 清空回收站: hdfs dfs -expu ...
- gitlab创建项目代码:
cd (当前工程文件夹目录) git init //初始化git git remote add origin http://worker.njbandou.com/KLElevator/kle ...
- go语言25个关键字总结
var和const :变量和常量的声明var varName type 或者 varName : = valuepackage and import: 导入func: 用于定义函数和方法return ...
- 【BIEE】09_BIEE控制台乱码问题解决
BIEE安装完成后,点击[启动BI服务] 接着从弹出窗口可以发现,全部汉字都是乱码 出现这种情况,想看一下BIEE启动情况是很费劲的,接着我们处理一下这个问题 1.从路径D:\obiee\user_p ...
- Tomcat Https配置
一.生成KeyStore 打开命令行,输入:keytool -genkey -alias tomcat_server -keyalg RSA -storepass jimmypwd -validity ...
- C#的三大难点之二:托管与非托管
相关文章: C#的三大难点之前传:什么时候应该使用C#?C#的三大难点之一:byte与char,string与StringBuilderC#的三大难点之二:托管与非托管C#的三大难点之三:消息与事件 ...
- 对ListView滚动状态的监听
有的时候,我们需要对ListView滚动做一个相应的监听事件,例如:要实现如下图通讯录的功能: 思路为:首先呢,中间那个"路"字为一个TextView,它与ListView采用相对 ...
- CSS实现绝对定位居中
我们经常用margin:0 auto来实现水平居中,而一直认为margin:auto不能实现垂直居中……实际上,实现垂直居中仅需要声明元素高度和下面的CSS: .Absolute-Center { m ...