K-DSN

深度堆叠网络

Random Features for Large-Scale Kernel Machines
To accelerate the training of kernel machines, we propose to map the input data
to a randomized low-dimensional feature space and then apply existing fast linear
methods. Our randomized features are designed so that the inner products of the
transformed data are approximately equal to those in the feature space of a user
specified shift-invariant kernel. We explore two sets of random features, provide
convergence bounds on their ability to approximate various radial basis kernels,
and show that in large-scale classification and regression tasks linear machine
learning algorithms that use these features outperform state-of-the-art large-scale
kernel machines.
On the Error of Random Fourier Features

https://www.cs.cmu.edu/~dsutherl/papers/rff_uai15.pdf

Kernel methods give powerful, flexible, and the-
oretically grounded approaches to solving many
problems in machine learning. The standard ap-
proach, however, requires pairwise evaluations
of a kernel function, which can lead to scalabil-
ity issues for very large datasets. Rahimi and
Recht (2007) suggested a popular approach to
handling this problem, known as random Fourier
features. The quality of this approximation, how-
ever, is not well understood. We improve the uni-
form error bound of that paper, as well as giving
novel understandings of the embedding’s vari-
ance, approximation error, and use in some ma-
chine learning methods. We also point out that
surprisingly, of the two main variants of those
features, the more widely used is strictly higher-
variance for the Gaussian kernel and has worse
bounds.

Random Fourier Features的更多相关文章

  1. [占位-未完成]scikit-learn一般实例之十二:用于RBF核的显式特征映射逼近

    It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for clas ...

  2. Author and Submission Instructions

    This document contains information about the process of submitting a paper to NIPS 2014. You can als ...

  3. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

  4. (转载) AutoML 与轻量模型大列表

    作者:guan-yuan 项目地址:awesome-AutoML-and-Lightweight-Models 博客地址:http://www.lib4dev.in/info/guan-yuan/aw ...

  5. (转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models

    Awesome-AutoML-and-Lightweight-Models 原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-l ...

  6. Image Processing and Analysis_15_Image Registration:a survey of image registration techniques——1992

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  7. OpenLayers实现覆盖物选择信息提示

    var map; function init() { map = new OpenLayers.Map("map",{projection:"EPSG:3857" ...

  8. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  9. ArcGIS工具备忘

    1.Repair Geometry (Data Management) 几何图形修复,比如面图层不满足节点坐标逆时针 2.Raster Domain (3D Analyst) 获取栅格范围 3.Int ...

随机推荐

  1. 2016.3.16__HTML5新特性__第八天

    HTML 5 + CSS 3 假设您认为这篇文章还不错,能够去H5专题介绍中查看很多其它相关文章. 今日代码非常冗杂,所以非常多内容直接摘自网上,假设造成您的不适.请留言告知. 非常感谢. 输入标签, ...

  2. mongoDB - 插入数据

    db.use.js /** * 使用前:先安装node环境.express.mongodb. * * 1.1 安装Node * 1.2 npm i -D express mongodb &&a ...

  3. J2EE环境安装配置

    在下载,安装前先说下以下几个概念JDK,SDK,JRE,JVM ◆JDK Java Develop Kit (Java 开发包) ◆SDK Software Develop kit, 曾经JDK叫做J ...

  4. WIN10 当中装BDM驱动

      方法: 禁用第三方签名 将插件替换原有的dll   1.参考此篇文档 http://jingyan.baidu.com/article/375c8e19c2b25b25f2a229a3.html ...

  5. webcat——基于netty的http和websocket框架

    代码地址如下:http://www.demodashi.com/demo/12687.html Webcat是一个基于netty的简单.高性能服务端框架,目前提供http和websocket两种协议的 ...

  6. Jmeter3.0-插件管理

    本文转自推酷:http://www.tuicool.com/articles/UV7fI3V JMeter ,老牌,开源,轻量,Apache基金会的顶级项目,光是这些关键字就足以让大量用户将其纳入自己 ...

  7. Objective-C中的关联(objc_setAssociatedObject,objc_getAssociatedObject,objc_removeAssociatedObjects)

    关联的概念 所谓的关联,字面意思是把两个相关的对象放在一起,实际也是如此.把两个对象相互关联起来,使得其中的一个对象成为另外一个对象的一部分,这就是关联. 关联的作用 使用Category,我们可以给 ...

  8. xml格式发送

    1. namespace xml格式发送 { /// <summary> /// 实体转Xml,Xml转实体类 /// </summary> /// <typeparam ...

  9. C语言学习笔记(一) 开发环境的搭建

    写这个系列的原因是因为最近在学习C语言,记录博客会让自己能够更好的掌握学习到的东西.编程贵在坚持,每天改变一丢丢! C语言开发两个软件,一个是文本编辑工具,Notepad++或者是EditPlus都可 ...

  10. gopath基础概念

    GOROOT golang安装路径. GOPATH 官方解释,请google.go工作环境中常常用到的一个很重要的环境变量(这种设计类似java).具体用途:go命令常常需要用到的,如go run,g ...