K-DSN

深度堆叠网络

Random Features for Large-Scale Kernel Machines
To accelerate the training of kernel machines, we propose to map the input data
to a randomized low-dimensional feature space and then apply existing fast linear
methods. Our randomized features are designed so that the inner products of the
transformed data are approximately equal to those in the feature space of a user
specified shift-invariant kernel. We explore two sets of random features, provide
convergence bounds on their ability to approximate various radial basis kernels,
and show that in large-scale classification and regression tasks linear machine
learning algorithms that use these features outperform state-of-the-art large-scale
kernel machines.
On the Error of Random Fourier Features

https://www.cs.cmu.edu/~dsutherl/papers/rff_uai15.pdf

Kernel methods give powerful, flexible, and the-
oretically grounded approaches to solving many
problems in machine learning. The standard ap-
proach, however, requires pairwise evaluations
of a kernel function, which can lead to scalabil-
ity issues for very large datasets. Rahimi and
Recht (2007) suggested a popular approach to
handling this problem, known as random Fourier
features. The quality of this approximation, how-
ever, is not well understood. We improve the uni-
form error bound of that paper, as well as giving
novel understandings of the embedding’s vari-
ance, approximation error, and use in some ma-
chine learning methods. We also point out that
surprisingly, of the two main variants of those
features, the more widely used is strictly higher-
variance for the Gaussian kernel and has worse
bounds.

Random Fourier Features的更多相关文章

  1. [占位-未完成]scikit-learn一般实例之十二:用于RBF核的显式特征映射逼近

    It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for clas ...

  2. Author and Submission Instructions

    This document contains information about the process of submitting a paper to NIPS 2014. You can als ...

  3. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

  4. (转载) AutoML 与轻量模型大列表

    作者:guan-yuan 项目地址:awesome-AutoML-and-Lightweight-Models 博客地址:http://www.lib4dev.in/info/guan-yuan/aw ...

  5. (转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models

    Awesome-AutoML-and-Lightweight-Models 原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-l ...

  6. Image Processing and Analysis_15_Image Registration:a survey of image registration techniques——1992

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  7. OpenLayers实现覆盖物选择信息提示

    var map; function init() { map = new OpenLayers.Map("map",{projection:"EPSG:3857" ...

  8. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  9. ArcGIS工具备忘

    1.Repair Geometry (Data Management) 几何图形修复,比如面图层不满足节点坐标逆时针 2.Raster Domain (3D Analyst) 获取栅格范围 3.Int ...

随机推荐

  1. Elasticsearch教程(八) elasticsearch delete 删除数据(Java)

    Elasticsearch的删除也是很灵活的,下次我再介绍,DeleteByQuery的方式.今天就先介绍一个根据ID删除.上代码. package com.sojson.core.elasticse ...

  2. Kwickserver

    Kwickserver 欢迎来到Kwickserver的主页 Kwickserver是什么? Kwickserver是一个易于安装的和易于使用的服务器应用程序,从CD安装在PC兼容的硬件和坚持webi ...

  3. WEB接口测试之Jmeter接口测试自动化 (二)(数据分离)

    转载:    http://www.cnblogs.com/chengtch/p/6105231.html 通过逐个录入的方式,好不容易将需要测试几十个接口的300多个测试用例录入sampler-ht ...

  4. CMake 从文件路径中提取文件名

    FILE(GLOB_RECURSE SRC_FILES "*.c" "*.cc" "*.cpp" "*.h" " ...

  5. linger博客原创性博文导航

    linger博客原创性博文导航 http://blog.csdn.net/lingerlanlan 大学研究游戏外挂技术開始了此博客.断断续续写了些博文. 后来,開始机器学习和深度学习的研究工作,因为 ...

  6. RabbitMQ三----'任务分发 '

    当有Consumer需要大量的运算时,RabbitMQ Server需要一定的分发机制来balance每个Consumer的load.试想一下,对于web application来说,在一个很多的HT ...

  7. 为什么要上大四???why

    毕业证        即将要上大四了.近期一直在思考,毕业证对于我有什么作用呢?我从来不忌讳表露自己的观点.哪怕这个观点是错误的. 如今这个观点,想必又要激起无数人对我的责骂吧?        但是毕 ...

  8. group by having和connect by

    --使用group by 子句对数据进行分组:对group by 子句形成的组运行聚集函数计算每一组的值:最后用having 子句去掉不符合条件的组.--having 子句中的每一个元素也必须出现在s ...

  9. float数据在内存中的存储方法

    浮点型变量在计算机内存中占用4字节(Byte),即32-bit.遵循IEEE-754格式标准.一个浮点数由2部分组成:底数m 和 指数e.                          ±mant ...

  10. ASP.NET CORE RAZOR :个性化显示

    https://docs.microsoft.com/zh-cn/aspnet/core/tutorials/razor-pages/da1 我们的电影应用有个不错的开始,但是展示效果还不够理想. 我 ...