K-DSN

深度堆叠网络

Random Features for Large-Scale Kernel Machines
To accelerate the training of kernel machines, we propose to map the input data
to a randomized low-dimensional feature space and then apply existing fast linear
methods. Our randomized features are designed so that the inner products of the
transformed data are approximately equal to those in the feature space of a user
specified shift-invariant kernel. We explore two sets of random features, provide
convergence bounds on their ability to approximate various radial basis kernels,
and show that in large-scale classification and regression tasks linear machine
learning algorithms that use these features outperform state-of-the-art large-scale
kernel machines.
On the Error of Random Fourier Features

https://www.cs.cmu.edu/~dsutherl/papers/rff_uai15.pdf

Kernel methods give powerful, flexible, and the-
oretically grounded approaches to solving many
problems in machine learning. The standard ap-
proach, however, requires pairwise evaluations
of a kernel function, which can lead to scalabil-
ity issues for very large datasets. Rahimi and
Recht (2007) suggested a popular approach to
handling this problem, known as random Fourier
features. The quality of this approximation, how-
ever, is not well understood. We improve the uni-
form error bound of that paper, as well as giving
novel understandings of the embedding’s vari-
ance, approximation error, and use in some ma-
chine learning methods. We also point out that
surprisingly, of the two main variants of those
features, the more widely used is strictly higher-
variance for the Gaussian kernel and has worse
bounds.

Random Fourier Features的更多相关文章

  1. [占位-未完成]scikit-learn一般实例之十二:用于RBF核的显式特征映射逼近

    It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for clas ...

  2. Author and Submission Instructions

    This document contains information about the process of submitting a paper to NIPS 2014. You can als ...

  3. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

  4. (转载) AutoML 与轻量模型大列表

    作者:guan-yuan 项目地址:awesome-AutoML-and-Lightweight-Models 博客地址:http://www.lib4dev.in/info/guan-yuan/aw ...

  5. (转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models

    Awesome-AutoML-and-Lightweight-Models 原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-l ...

  6. Image Processing and Analysis_15_Image Registration:a survey of image registration techniques——1992

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  7. OpenLayers实现覆盖物选择信息提示

    var map; function init() { map = new OpenLayers.Map("map",{projection:"EPSG:3857" ...

  8. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  9. ArcGIS工具备忘

    1.Repair Geometry (Data Management) 几何图形修复,比如面图层不满足节点坐标逆时针 2.Raster Domain (3D Analyst) 获取栅格范围 3.Int ...

随机推荐

  1. Scala和Java二种方式实战Spark Streaming开发

    一.Java方式开发 1.开发前准备:假定您以搭建好了Spark集群. 2.开发环境采用eclipse maven工程,需要添加Spark Streaming依赖. 3.Spark streaming ...

  2. 倍福TwinCAT(贝福Beckhoff)基础教程5.1 TwinCAT-3 读写注册表

    读写注册表和读写文件一样,里面涉及的输入类型比较复杂,需要参考官方范例 sSubKey是指注册表的路径 sValName是指注册表要写入的名值对的名称 eValType是一个枚举类型(而且不是什么常规 ...

  3. LeetCode题目:Permutations

    题目:Given a collection of distinct numbers, return all possible permutations. 大意:全排列给定数组,其中给定数组中没有相同的 ...

  4. 【BIEE】[nQSError: 35008]尝试从服务器检出对象时出错。请验证服务器设置。

    今天在使用PRD时,我先导入表A,然后觉得表A的名字不好,就把导入的表A重命名为表A_TMP,接着保存资料库就卡住了"未响应"(一般不会出现这种问题) 接着我直接使用任务管理器强制 ...

  5. xml中处理特殊字符和转义字符

    XML 中的特殊字符 > 和 开始标记 > 例如: 5 ]] 如何获得这些HTML内容呢? XmlDocument doc = new XmlDocument(); doc.Load(&q ...

  6. Android插件化开发,初入殿堂

    好久没有写博客了,这次准备写写我这几天的研究成果--Android插件化开发框架CJFrameForAndroid. 好久没有写博客了,这次准备写写我这几天的研究成果--Android插件化开发框架C ...

  7. App功能测试的7大注意点

    转载于:https://mp.weixin.qq.com/s/27DZ1EQVpl-gb4S7n-He4g 01 运行 1)App安装完成后的试运行,可正常打开软件. 2)App打开测试,是否有加载状 ...

  8. surface4 笔盖失灵的解决方案

    http://tieba.baidu.com/p/3670357234 先找到设备管理器,找到蓝牙,删除里面所有的设备.然后重启. 之后再次找到蓝牙,匹配pen.就可以用了. 解决的前提是:我确定笔帽 ...

  9. atitit.ntfs ext 文件系统新特性对比

    atitit.ntfs ext 文件系统新特性对比 1. 现代文件系统应该有的特性2 1.1. 恢复Log2 1.2. 压缩2 1.3. Meta ext2 1.4. Fulltextཟsearch  ...

  10. 浅谈"壳"(一)

    壳,即坚硬的外皮,当壳的厚度与其曲面率半径的比值小于0.5时.称为"薄壳".反之称为"厚壳".由壳演化来的胸甲,盾牌. 在计算机这个注重创意又不失从文化科技中汲 ...