From http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/glossary.html

glossary of terms

analysis

Analysis is the process of converting full text to terms. Depending on which analyzer is used, these phrases: FOO BARFoo-Barfoo,bar will probably all result in the terms foo and bar. These terms are what is actually stored in the index. A full text query (not a term query) for FoO:bAR will also be analyzed to the terms foo,bar and will thus match the terms stored in the index. It is this process of analysis (both at index time and at search time) that allows elasticsearch to perform full text queries. Also see text and term.

cluster

A cluster consists of one or more nodes which share the same cluster name. Each cluster has a single master node which is chosen automatically by the cluster and which can be replaced if the current master node fails.

document

A document is a JSON document which is stored in elasticsearch. It is like a row in a table in a relational database. Each document is stored in an index and has a type and an id. A document is a JSON object (also known in other languages as a hash / hashmap / associative array) which contains zero or more fields, or key-value pairs. The original JSON document that is indexed will be stored in the _source field, which is returned by default when getting or searching for a document.

id

The ID of a document identifies a document. The index/type/id of a document must be unique. If no ID is provided, then it will be auto-generated. (also see routing)

field

document contains a list of fields, or key-value pairs. The value can be a simple (scalar) value (eg a string, integer, date), or a nested structure like an array or an object. A field is similar to a column in a table in a relational database. The mapping for each field has a field type (not to be confused with document type) which indicates the type of data that can be stored in that field, eg integerstringobject. The mapping also allows you to define (amongst other things) how the value for a field should be analyzed.

index

An index is like a database in a relational database. It has a mapping which defines multipletypes. An index is a logical namespace which maps to one or more primary shards and can have zero or more replica shards.

mapping

A mapping is like a schema definition in a relational database. Each index has a mapping, which defines each type within the index, plus a number of index-wide settings. A mapping can either be defined explicitly, or it will be generated automatically when a document is indexed.

node

A node is a running instance of elasticsearch which belongs to a cluster. Multiple nodes can be started on a single server for testing purposes, but usually you should have one node per server. At startup, a node will use unicast (or multicast, if specified) to discover an existing cluster with the same cluster name and will try to join that cluster.

primary shard

Each document is stored in a single primary shard. When you index a document, it is indexed first on the primary shard, then on all replicas of the primary shard. By default, an index has 5 primary shards. You can specify fewer or more primary shards to scale the number ofdocuments that your index can handle. You cannot change the number of primary shards in an index, once the index is created. See also routing

replica shard

Each primary shard can have zero or more replicas. A replica is a copy of the primary shard, and has two purposes:

  1. increase failover: a replica shard can be promoted to a primary shard if the primary fails
  2. increase performance: get and search requests can be handled by primary or replica shards. By default, each primary shard has one replica, but the number of replicas can be changed dynamically on an existing index. A replica shard will never be started on the same node as its primary shard.
routing

When you index a document, it is stored on a single primary shard. That shard is chosen by hashing the routing value. By default, the routing value is derived from the ID of the document or, if the document has a specified parent document, from the ID of the parent document (to ensure that child and parent documents are stored on the same shard). This value can be overridden by specifying a routing value at index time, or a routing field in the mapping.

shard

A shard is a single Lucene instance. It is a low-level “worker” unit which is managed automatically by elasticsearch. An index is a logical namespace which points to primary andreplica shards. Other than defining the number of primary and replica shards that an index should have, you never need to refer to shards directly. Instead, your code should deal only with an index. Elasticsearch distributes shards amongst all nodes in the cluster, and can move shards automatically from one node to another in the case of node failure, or the addition of new nodes.

source field

By default, the JSON document that you index will be stored in the _source field and will be returned by all get and search requests. This allows you access to the original object directly from search results, rather than requiring a second step to retrieve the object from an ID. Note: the exact JSON string that you indexed will be returned to you, even if it contains invalid JSON. The contents of this field do not indicate anything about how the data in the object has been indexed.

term

A term is an exact value that is indexed in elasticsearch. The terms fooFooFOO are NOT equivalent. Terms (i.e. exact values) can be searched for using term queries. See also text andanalysis.

text

Text (or full text) is ordinary unstructured text, such as this paragraph. By default, text will beanalyzed into terms, which is what is actually stored in the index. Text fields need to be analyzed at index time in order to be searchable as full text, and keywords in full text queries must be analyzed at search time to produce (and search for) the same terms that were generated at index time. See also term and analysis.

type

A type is like a table in a relational database. Each type has a list of fields that can be specified for documents of that type. The mapping defines how each field in the document is analyzed.

 

Elasticsearch - glossary的更多相关文章

  1. 全文搜索之 Elasticsearch

    概述 Elasticsearch (ES)是一个基于 Lucene 的开源搜索引擎,它不但稳定.可靠.快速,而且也具有良好的水平扩展能力,是专门为分布式环境设计的. 特性 安装方便:没有其他依赖,下载 ...

  2. (转)开源分布式搜索平台ELK(Elasticsearch+Logstash+Kibana)入门学习资源索引

    Github, Soundcloud, FogCreek, Stackoverflow, Foursquare,等公司通过elasticsearch提供搜索或大规模日志分析可视化等服务.博主近4个月搜 ...

  3. 开源分布式搜索平台ELK(Elasticsearch+Logstash+Kibana)入门学习资源索引

    from:  http://www.w3c.com.cn/%E5%BC%80%E6%BA%90%E5%88%86%E5%B8%83%E5%BC%8F%E6%90%9C%E7%B4%A2%E5%B9%B ...

  4. 〈一〉ElasticSearch的介绍

    目录 什么是ElasticSearch 核心能力 ES的搜索核心 搜索引擎选择 搜索的处理 补充: 小节总结: 基本学习环境搭建 如何操作ElasticSearch 下载.安装和运行(Based Wi ...

  5. Elasticsearch之java的基本操作一

    摘要   接触ElasticSearch已经有一段了.在这期间,遇到很多问题,但在最后自己的不断探索下解决了这些问题.看到网上或多或少的都有一些介绍ElasticSearch相关知识的文档,但个人觉得 ...

  6. Elasticsearch 5.0 中term 查询和match 查询的认识

    Elasticsearch 5.0 关于term query和match query的认识 一.基本情况 前言:term query和match query牵扯的东西比较多,例如分词器.mapping ...

  7. 以bank account 数据为例,认识elasticsearch query 和 filter

    Elasticsearch 查询语言(Query DSL)认识(一) 一.基本认识 查询子句的行为取决于 query context filter context 也就是执行的是查询(query)还是 ...

  8. Ubuntu 14.04中Elasticsearch集群配置

    Ubuntu 14.04中Elasticsearch集群配置 前言:本文可用于elasticsearch集群搭建参考.细分为elasticsearch.yml配置和系统配置 达到的目的:各台机器配置成 ...

  9. ElasticSearch 5学习(10)——结构化查询(包括新特性)

    之前我们所有的查询都属于命令行查询,但是不利于复杂的查询,而且一般在项目开发中不使用命令行查询方式,只有在调试测试时使用简单命令行查询,但是,如果想要善用搜索,我们必须使用请求体查询(request ...

随机推荐

  1. GEF入门实例_总结_06_为编辑器添加内容

    一.前言 本文承接上一节:GEF入门实例_总结_05_显示一个空白编辑器 在上一节我们为我们的插件添加了一个空白的编辑器,这一节我们将为此编辑器添加内容. 二.GEF的MVC模式 在此只简单总结一下, ...

  2. django的settings文件

    转载:http://www.cnblogs.com/likeshan168/articles/3596344.html

  3. MSSQL日誌傳輸熱備份注意事項

    主次數據庫需要新增一個用戶,並設定agent服務用此用戶執行 主次數據庫需要設定共享目錄並擁有讀/寫權限,用anent執行用戶即可 如果新增日誌傳輸時順便初始化數據庫記得次數據庫主機目錄給寫權限,否則 ...

  4. Sqoop-从hive导出分区表到MySQL

    经多次验证,发现并没有特殊的方法能够直接把多个分区一次性读入,并插入MySQL的方法,以后发现会在此添加. Sqoop只提供了从MySQL导入到HIVE分区表的相关参数,反向并无特别参数. 从HIVE ...

  5. 3.Monkey Script小案例

    1.实现打开搜狗搜索APP,在搜索框输入内容,点击回车,重复2次运行 2.实现代码如下所示: type=user count=10 speed=1.0 start data >> Laun ...

  6. hihoCoder#1062(最近公共祖先一)

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho最近发现了一个神奇的网站!虽然还不够像58同城那样神奇,但这个网站仍然让小Ho乐在其中,但这是为什么呢? “为什么呢 ...

  7. 机器学习:PCA(实例:MNIST数据集)

    一.数据 获取数据 import numpy as np from sklearn.datasets import fetch_mldata mnist = fetch_mldata("MN ...

  8. vector向量容器元素排序与查找

    1.利用标准库函数sort()对vector进行排序 参考源码: #include <algorithm> #include <vector> vector<int> ...

  9. Redis 集群之 Redis-Cluster

    Redis集群官方推荐方案 Redis-Cluster 集群 redis cluster 通过分片实࣫容量扩展 通过主从复制实࣫节点的高可用 节点之间互相通信 每个节点都维护整个集群的节点信息 red ...

  10. Maven的Snapshot版本与Release版本

    1. Snapshot版本代表不稳定.尚处于开发中的版本 2. Release版本则代表稳定的版本 3. 什么情况下该用SNAPSHOT? 协同开发时,如果A依赖构件B,由于B会更新,B应该使用SNA ...