SPOJ705 Distinct Substrings (后缀自动机&后缀数组)
Given a string, we need to find the total number of its distinct substrings.
Input
T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000
Output
For each test case output one number saying the number of distinct substrings.
Example
Sample Input:
2
CCCCC
ABABA
Sample Output:
5
9
Explanation for the testcase with string ABABA:
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9.
题意:
求出大写的字符串里不同的子串。默写了一遍后缀自动机。今天主要是练习后缀数组。
注意:
- 注意是大写还是小写;
- 注意init初始化的时候没有一次性memset,所以下面要把每个新出现的点memset。不要搞忘。
后缀自动机:
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
struct SAM
{
int ch[maxn][],fa[maxn],maxlen[maxn],Last,sz;
void init()
{
sz=Last=; fa[]=maxlen[]=;
memset(ch[],,sizeof(ch[]));
}
void add(int x)
{
int np=++sz,p=Last;Last=np;
memset(ch[np],,sizeof(ch[np]));
maxlen[np]=maxlen[p]+;
while(p&&!ch[p][x]) ch[p][x]=np,p=fa[p];
if(!p) fa[np]=;
else {
int q=ch[p][x];
if(maxlen[p]+==maxlen[q]) fa[np]=q;
else {
int nq=++sz;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
maxlen[nq]=maxlen[p]+;
fa[nq]=fa[q];
fa[q]=fa[np]=nq;
while(p&&ch[p][x]==q) ch[p][x]=nq,p=fa[p];
}
}
}
};
SAM Sam;
int main()
{
char chr[maxn];
int T,ans,i,L;
scanf("%d",&T);
while(T--){
Sam.init();ans=;
scanf("%s",chr);
L=strlen(chr);
for(i=;i<L;i++) Sam.add(chr[i]-'A');
for(i=;i<=Sam.sz;i++) ans+=Sam.maxlen[i]-Sam.maxlen[Sam.fa[i]];
printf("%d\n",ans);
}
return ;
}
后缀数组:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
char ch[maxn];
int L;
struct SA
{
int cntA[maxn],cntB[maxn],A[maxn],B[maxn];
int rank[maxn],sa[maxn],tsa[maxn],ht[maxn];void sort()
{
for (int i = ; i < ; i ++) cntA[i] = ;
for (int i = ; i <= L; i ++) cntA[ch[i]] ++;
for (int i = ; i < ; i ++) cntA[i] += cntA[i - ];
for (int i = L; i; i --) sa[cntA[ch[i]] --] = i;
rank[sa[]] = ;
for (int i = ; i <= L; i ++){
rank[sa[i]] = rank[sa[i - ]];
if (ch[sa[i]] != ch[sa[i - ]]) rank[sa[i]] ++;
}
for (int l = ; rank[sa[L]] < L; l <<= ){
for (int i = ; i <= L; i ++) cntA[i] = ;
for (int i = ; i <= L; i ++) cntB[i] = ;
for ( int i = ; i <= L; i ++){
cntA[A[i] = rank[i]] ++;
cntB[B[i] = (i + l <= L) ? rank[i + l] : ] ++;
}
for (int i = ; i <= L; i ++) cntB[i] += cntB[i - ];
for (int i = L; i; i --) tsa[cntB[B[i]] --] = i;
for (int i = ; i <= L; i ++) cntA[i] += cntA[i - ];
for (int i = L; i; i --) sa[cntA[A[tsa[i]]] --] = tsa[i];
rank[sa[]] = ;
for (int i = ; i <= L; i ++){
rank[sa[i]] = rank[sa[i - ]];
if (A[sa[i]] != A[sa[i - ]] || B[sa[i]] != B[sa[i - ]]) rank[sa[i]] ++;
}
}
}
void getheight()
{
for (int i = , j = ; i <= L; i ++){
if (j) j --;
while (ch[i + j] == ch[sa[rank[i] - ] + j]) j ++;
ht[rank[i]] = j;
}
}
};
SA Sa;
int main()
{
int T,ans,i;
scanf("%d",&T);
while(T--){
ans=;
scanf("%s",ch+);
L=strlen(ch+);
Sa.sort();
Sa.getheight();
for(i=;i<=L;i++) ans+=L-Sa.sa[i]+-Sa.ht[i];
printf("%d\n",ans);
}
return ;
}
SPOJ705 Distinct Substrings (后缀自动机&后缀数组)的更多相关文章
- poj 1743 Musical Theme 后缀自动机/后缀数组/后缀树
题目大意 直接用了hzwer的题意 题意:有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题."主题&qu ...
- [模板] 后缀自动机&&后缀树
后缀自动机 后缀自动机是一种确定性有限状态自动机, 它可以接收字符串\(s\)的所有后缀. 构造, 性质 翻译自毛子俄罗斯神仙的博客, 讲的很好 后缀自动机详解 - DZYO的博客 - CSDN博客 ...
- Distinct Substrings(spoj694)(sam(后缀自动机)||sa(后缀数组))
Given a string, we need to find the total number of its distinct substrings. Input \(T-\) number of ...
- Spoj-DISUBSTR - Distinct Substrings~New Distinct Substrings SPOJ - SUBST1~(后缀数组求解子串个数)
Spoj-DISUBSTR - Distinct Substrings New Distinct Substrings SPOJ - SUBST1 我是根据kuangbin的后缀数组专题来的 这两题题 ...
- Distinct Substrings SPOJ - DISUBSTR 后缀数组
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- 705. New Distinct Substrings spoj(后缀数组求所有不同子串)
705. New Distinct Substrings Problem code: SUBST1 Given a string, we need to find the total number o ...
- SPOJ SUBLEX - Lexicographical Substring Search 后缀自动机 / 后缀数组
SUBLEX - Lexicographical Substring Search Little Daniel loves to play with strings! He always finds ...
- 回文树&后缀自动机&后缀数组
KMP,扩展KMP和Manacher就不写了,感觉没多大意思. 之前感觉后缀自动机简直可以解决一切,所以不怎么写后缀数组. 马拉车主要是通过对称中心解决问题,有的时候要通过回文串的边界解决问题 ...
- POJ3080 POJ3450Corporate Identity(广义后缀自动机||后缀数组||KMP)
Beside other services, ACM helps companies to clearly state their “corporate identity”, which includ ...
随机推荐
- word2vec_basic.py
ssh://sci@192.168.67.128:22/usr/bin/python3 -u /home/win_pymine_clean/feature_wifi/word2vec_basic.py ...
- iOS main函数讲解
int main(int argc, char * argv[]) { @autoreleasepool { //四个参数 主要讲解后面两个参数 /* 第三个参数:UIApplication或者其子类 ...
- Zabbix-Agent 客户端安装配置
1.安装Zabbix官方的yum源 [root@crazy-acong ~]# rpm -ivh http://repo.zabbix.com/zabbix/2.2/rhel/6/x86_64/zab ...
- Delphi 对话框实现源码分析
Delphi 对话框实现源码分析 简介 在这篇文章中,我将大概的从Delphi XE2 的Dialogs单元入手,分析ShowMessage,MessageBox等对话框运行原理,希望能帮助你理解 ...
- [luogu3601]签到题
[luogu3601]签到题 luogu 求\[\sum_{i=l}^ri-\phi(i)\] 一个朴素的想法是枚举l~r,根号求\(\phi\),显然这样是\((r-l)\sqrt r\),时间无法 ...
- windows下安装PyQt4
第一步:确认自己电脑上的Python版本.然后下载对应的.whl文件下载 第二步:https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyqt4上下载对应版本版本的 ...
- python+NLTK 自然语言学习处理六:分类和标注词汇一
在一段句子中是由各种词汇组成的.有名词,动词,形容词和副词.要理解这些句子,首先就需要将这些词类识别出来.将词汇按它们的词性(parts-of-speech,POS)分类并相应地对它们进行标注.这个过 ...
- test_bdc
[转]REPORT zbdc_test_by_shir. * 定义个BDC格式的内表**************************************************DATA : B ...
- 每天一个Linux命令(16)which命令
which命令用于查找并显示给定命令的绝对路径. 环境变量PATH中保存了查找命令时需要遍历的目录.which指令会在环境变量$PATH设置的目录里查找符合条件的文件.也就是说,使用which命令,就 ...
- Redis的管理
一.redis持久化 redis是内存数据库,一切的数据都是存储到内存中的,我们知道,当服务器意外关机,那么在内存中的数据都将丢失,但是redis为我们提供持久化功能,这样就能把数据保存到硬盘上.re ...