步骤:

(一) 选择数据源

(二)选择要分析的字段

(三)选择需要的关联规则算法

(四)点击start运行

(五) 分析结果

算法选择:

Apriori算法参数含义

1.car:如果设为真,则会挖掘类关联规则而不是全局关联规则。
2.classindex: 类属性索引。如果设置为-1,最后的属性被当做类属性。
3.delta: 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。
4.lowerBoundMinSupport: 最小支持度下界。
5.metricType: 度量类型,设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。
在 Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是:
a)Lift : P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度.
b)Leverage :P(A,B)-P(A)P(B)
Leverage=0时A和B独立,Leverage越大A和B的关系越密切
c) Conviction:P(A)P(!B)/P(A,!B) (!B表示B没有发生) Conviction也是用来衡量A和B的独立性。从它和lift的关系(对B取反,代入Lift公式后求倒数)可以看出,这个值越大, A、B越关联。
6.minMtric :度量的最小值。
7.numRules: 要发现的规则数。
8.outputItemSets: 如果设置为真,会在结果中输出项集。
9.removeAllMissingCols: 移除全部为缺省值的列。
10.significanceLevel :重要程度。重要性测试(仅用于置信度)。
11.upperBoundMinSupport: 最小支持度上界。 从这个值开始迭代减小最小支持度。
12.verbose: 如果设置为真,则算法会以冗余模式运行。

FPgrowph决策树算法

FP的全称是Frequent Pattern,在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。

下一篇:

http://www.cnblogs.com/tomcattd/p/3478678.html

Weka学习之关联规则分析的更多相关文章

  1. 【集美大学1411_助教博客】个人作业2——英语学习APP案例分析 成绩

    个人作业2--英语学习APP案例分析,截止发稿时间全班31人,提交31,未提交0人.有一名同学已经写了作业但忘记提交了,这次给分了,但下不为例.由于助教这周有点忙,所以点评得非常不及时,请同学们见谅. ...

  2. ROS_Kinetic_29 kamtoa simulation学习与示例分析(一)

    致谢源代码网址:https://github.com/Tutorgaming/kamtoa-simulation kamtoa simulation学习与示例分析(一) 源码学习与分析是学习ROS,包 ...

  3. GIS案例学习笔记-水文分析河网提取地理建模

    GIS案例学习笔记-水文分析河网提取地理建模 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:针对数字高程模型,通过水文分析,提取河网 操作时间:25分钟 数据 ...

  4. Android:日常学习笔记(2)——分析第一个Android应用程序

    Android:日常学习笔记(2)——分析第一个Android应用程序 Android项目结构 整体目录结构分析 说明: 除了APP目录外,其他目录都是自动生成的.APP目录的下的内容才是我们的工作重 ...

  5. HashMap的源码学习以及性能分析

    HashMap的源码学习以及性能分析 一).Map接口的实现类 HashTable.HashMap.LinkedHashMap.TreeMap 二).HashMap和HashTable的区别 1).H ...

  6. Netty 源码学习——客户端流程分析

    Netty 源码学习--客户端流程分析 友情提醒: 需要观看者具备一些 NIO 的知识,否则看起来有的地方可能会不明白. 使用版本依赖 <dependency> <groupId&g ...

  7. (转载)微软数据挖掘算法:Microsoft 关联规则分析算法(7)

    前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:微软数据挖掘算法:Microsoft 决策树分析算法(1).微软数据挖掘算法:Microsoft 聚类分析算法(2).微软数据挖掘算法: ...

  8. 深度学习Dropout技术分析

    深度学习Dropout技术分析 什么是Dropout? dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机 ...

  9. Weka关联规则分析

    购物篮分析: Apriori算法: 参数设置: 1.car 如果设为真,则会挖掘类关联规则而不是全局关联规则. 2. classindex 类属性索引.如果设置为-1,最后的属性被当做类属性. 3. ...

随机推荐

  1. Jmeter实时性能测试数据的监控

    Jmetet实时性能测试数据的监控和展示Jmeter Grafana InfluxDB 安装Grafana配置jmeter安装InfluxDB配置Grafana展示数据一安装InfluxDB 为了方便 ...

  2. SQL调优的基本原则

    在使用DBMS时经常对系统的性能有非常高的要求:不能占用过多的系统内存和CPU资源.要尽可能快的完成的数据库操作.要有尽可能高的系统吞吐量.如果系统开发出来不能满足要求的所有性能指标,则必须对系统进行 ...

  3. objective-c 强弱引用、properties的学习

    一.强弱引用 强引用:strong reference 弱引用:weak reference 引用可以理解为指针A指向的对象B.换句话说,拥有指针A的对象是对象B的所有者(ownership). 区别 ...

  4. [BZOJ3569]DZY Loves Chinese II(随机化+线性基)

    3569: DZY Loves Chinese II Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1515  Solved: 569[Submit][S ...

  5. POJ2796 Feel Good(单调栈)

    题意:给一个非负整数序列,求哪一段区间的权值最大,区间的权值=区间所有数的和×区间最小的数. 用单调非递减栈在O(n)计算出序列每个数作为最小值能向左和向右延伸到的位置,然后O(n)枚举每个数利用前缀 ...

  6. (转)Unity3d各种坑

    1.unity的资源包一旦量很大的时候卸载不干净,你可以尝试反复切场景 ,内存诡异的 增加 一直到爆,assetsbundle.unload(true);有问题 你想要卸载你必须先让你加载过的资源为n ...

  7. 十. 图形界面(GUI)设计1.图形界面设计基础

    早先程序使用最简单的输入输出方式,用户在键盘输入数据,程序将信息输出在屏幕上.现代程序要求使用图形用户界面(Graphical User Interface,GUI),界面中有菜单.按钮等,用户通过鼠 ...

  8. java拦截器与过滤器打印请求url与参数

    HttpServletRequest httpServletRequest = (HttpServletRequest) request; HttpServletResponse httpServle ...

  9. iOS教程:如何使用Core Data – 预加载和引入数据

    这是接着上一次<iOS教程:Core Data数据持久性存储基础教程>的后续教程,程序也会使用上一次制作完成的. 再上一个教程中,我们只做了一个数据模型,之后我们使用这个数据模型中的数据创 ...

  10. NFS 服务配置篇

    安装.配置NFS服务 1.NFS简介 NFS(network file system) NFS是一个主机A通过网络,允许其他主机B可以来共享主机A的一个目录文件的一个文件系统 2.需要安装两个包nfs ...