time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In the Kingdom K., there are n towns numbered with integers from 1 to n. The towns are connected by n bi-directional roads numbered with integers from 1 to n. The i-th road connects the towns ui and vi and its length is li. There is no more than one road between two towns. Also, there are no roads that connect the towns with itself.

Let's call the inconvenience of the roads the maximum of the shortest distances between all pairs of towns.

Because of lack of money, it was decided to close down one of the roads so that after its removal it is still possible to reach any town from any other. You have to find the minimum possible inconvenience of the roads after closing down one of the roads.

Input

The first line contains the integer n (3 ≤ n ≤ 2·105) — the number of towns and roads.

The next n lines contain the roads description. The i-th from these lines contains three integers ui, vi, li (1 ≤ ui, vi ≤ n, 1 ≤ li ≤ 109) — the numbers of towns connected by the i-th road and the length of the i-th road. No road connects a town to itself, no two roads connect the same towns.

It's guaranteed that it's always possible to close down one of the roads so that all the towns are still reachable from each other.

Output

Print a single integer — the minimum possible inconvenience of the roads after the refusal from one of the roads.

Examples
Input
3
1 2 4
2 3 5
1 3 1
Output
5
Input
5
2 3 7
3 1 9
4 1 8
3 5 4
4 5 5
Output
18

题意 :

  给定n个点 n条边 (保证联通 ,边无向 ,无重边 ,无自环)

  断掉某条边以后 保证联通的情况下,图上有一条最长路

  求最长路的最小值

思路 :

  n个联通的点 n条边

  即 树上多了一个环

  断掉的边只能在环上

  所以 题意转化为 从环上断掉一个点以后 树上直径的最小化

  首先 dfs 找出环

  然后得到非环上边的最长路(求以环上点为根的子树直径)

  之后得到环上点到其子树的最长路 记为 点  i  的权值  val [ i ]

  样例二:

      

  得到 当前最长直径是 点 3 的子树  长度为 7   记录下来为   L1  (我在这里错了几次)

  得到每个点的权值

val   [ 1 ]  =    0

val   [ 3 ]  =    7

val   [ 4 ]  =    0

val   [ 5 ]  =    0

然后得到环上的 前缀路径和 与后缀路径和

  point     1  ->  3  ->   5  ->  4  ->  1  ->  3  ->  5  ->  4

  road         9        4        5       8       9       4        5

  pre- >    0       9        13     18     26      35     39       44  ->

  suf <-   44       35        31      26      18        9       5       0   <-

  然后  容易知道  到点 i  的  “前缀和”+ “点权值”  (pre [ i ] + val [ i ])  表示  环上第一个点(上图中为1)到 i 的 子树的最长路径

  由于  “树上 离任意一点最远的一定是  直径的某个端点”

  这样由区间最大值就可以得到 一个直径端点   然后往 “前面” 和 “后面” 找到 离端点最远的另一个点 就是直径的第二个端点

  每次的区间大小为环的长度 (表示断掉一条边以后的路径前缀和) 每次向右移动一次 得到 第二个直径  并更新 ans

  区间最大值的维护可以通过线段树      维护一个前缀的  一个后缀的

  最后答案输出 max(ans,L1)  即可

  

    

 #include <bits/stdc++.h>

 #define mp make_pair
#define pb push_back
#define lson l,mid,pos<<1
#define rson mid+1,r,pos<<1|1
#define fi first
#define se second using namespace std; typedef long long LL;
typedef pair<long long ,int> pli; const long long INF = 0x3f3f3f3f3f3f3f3f; vector <int > nt[];
vector <int > cc[];
int noloop[];
int cnt[];
LL val[];
LL toval[];
LL id[];
int idfrm[];
pli tree1[<<];
pli tree2[<<];
LL pre[];
LL suf[];
int mark=;
LL zz010=;
void dfs1(int x,int fa)
{
noloop[x]=;
for (int i=;i<nt[x].size();i++){
if (fa==nt[x][i])continue;
cnt[nt[x][i]]--;
if (cnt[nt[x][i]]==)dfs1(nt[x][i],x);
}
}
LL dfs2(int x,int fa)
{
LL ret=;
LL ret2=;
for (int i=;i<nt[x].size();i++){
if (fa==nt[x][i]||noloop[nt[x][i]]==)continue;
LL tmp=dfs2(nt[x][i],x)+cc[x][i];
if (tmp>ret){
ret2=ret;
ret=tmp;
}else if (tmp>ret2)ret2=tmp;
}
zz010=max(zz010,ret+ret2);
return val[x]=ret;
}
void dfs3(int x,int fa)
{
idfrm[mark]=x;
id[x]=mark;
for (int i=;i<nt[x].size();i++){
if (noloop[nt[x][i]]||nt[x][i]==fa||id[nt[x][i]])continue;
toval[mark++]=cc[x][i];
dfs3(nt[x][i],x);
return ;
}
for (int i=;i<nt[x].size();i++){
if (id[nt[x][i]]!=)continue;
toval[mark]=cc[x][i];
return ;
}
}
void push_up(pli tree[],int pos)
{
tree[pos]=max(tree[pos<<],tree[pos<<|]);
}
void upd(pli tree[],int l,int r,int pos,int x,long long val)
{
if (l==r){
tree[pos].fi=val;
tree[pos].se=x;
return ;
}
int mid=(l+r)>>;
if (x<=mid)upd(tree,lson,x,val);
else upd(tree,rson,x,val);
push_up(tree,pos);
}
pli query(pli tree[],int l,int r,int pos,int l1,int r1)
{
if (l1>r1)return mp(-INF,);
if (l>=l1&&r1>=r){
return tree[pos];
}
pli mx=mp(-INF,);
int mid=(l+r)>>;
if (mid>=l1)mx=query(tree,lson,l1,r1);
if (mid+<=r1)mx=max(mx,query(tree,rson,l1,r1));
return mx;
}
int main()
{
int n;
scanf("%d",&n);
int a,b;
long long v;
for (int i=;i<n;i++){
scanf("%d%d%I64d",&a,&b,&v);
nt[a].pb(b);
nt[b].pb(a);
cc[a].pb(v);
cc[b].pb(v);
cnt[a]++;
cnt[b]++;
}
for (int i=;i<=n;i++){
if (nt[i].size()==)dfs1(i,-);
}
for (int i=;i<=n;i++){
if (noloop[i]==)dfs2(i,-);
}
for (int i=;i<=n;i++){
if (!noloop[i]){
dfs3(i,-);
break;
}
}
long long tmp=;
for (int i=;i<=mark;i++){
idfrm[i+mark]=idfrm[i];
toval[i+mark]=toval[i];
}
toval[]=toval[mark];
for (int i=;i<=*mark;i++){
pre[i]=pre[i-]+toval[i-];
upd(tree1,,*mark,,i,val[idfrm[i]]+pre[i]);
}
for (int i=*mark;i>=;i--){
suf[i]=suf[i+]+toval[i];
upd(tree2,,*mark,,i,val[idfrm[i]]+suf[i]);
}
LL ans=INF;
int flag=;
for (int i=;i<=mark;i++){
pli now_mx=query(tree1,,*mark,,i,i+mark-);
pli tmp1=query(tree1,,*mark,,now_mx.se+,i+mark-);
pli tmp2=query(tree2,,*mark,,i,now_mx.se-);
LL dis1=0LL,dis2=0LL,dis3=,dis4=;
if (tmp1.se!=)dis1=val[idfrm[now_mx.se]]+val[idfrm[tmp1.se]]+pre[tmp1.se]-pre[now_mx.se];
if (tmp2.se!=)dis2=val[idfrm[now_mx.se]]+val[idfrm[tmp2.se]]-pre[tmp2.se]+pre[now_mx.se];
ans=min(ans,max(dis1,dis2));
} cout<<max(ans,zz010);
return ;
}

最后   数组记得开大点   前缀和与后缀和  为 环上点数量的两倍

  

codeforces 427 div.2 F. Roads in the Kingdom的更多相关文章

  1. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  2. Codeforces 835 F Roads in the Kingdom(树形dp)

    F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...

  3. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  4. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  5. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  6. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

  7. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  8. Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块

    Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块 [Problem Description] ​ ...

  9. CodeForces 835C - Star sky | Codeforces Round #427 (Div. 2)

    s <= c是最骚的,数组在那一维开了10,第八组样例直接爆了- - /* CodeForces 835C - Star sky [ 前缀和,容斥 ] | Codeforces Round #4 ...

随机推荐

  1. POJ 1044: Date bugs

    题目描述 There are rumors that there are a lot of computers having a problem with the year 2000. As they ...

  2. UOJ 180【UR #12】实验室外的攻防战

    http://uoj.ac/contest/25/problem/180 从前往后对比串A,B 当$A_i,B_i$不相同时找到$B_i$在A中的位置j 若$min{A_1,A_2,A_3...... ...

  3. [POI2014]Ant colony

    题目大意: 给定一棵$n(n\le10^6)$个结点的树.在每个叶子结点,有$g$群蚂蚁要从外面进来,其中第$i$群有$m_i$只蚂蚁.这些蚂蚁依次爬树(一群蚂蚁爬完后才会爬另一群),若当前经过结点度 ...

  4. [CF232E]Quick Tortoise

    题目大意: 给你一个$n\times m(n,m\leq 500)$的格子,有一些是障碍物.从一个格子出发只能向下或向右走,有$q$组询问,每次询问从一个点是否能够到达另一个点. 思路: 分治. 两点 ...

  5. INFORMATION_SCHEMA获取数据库的信息

    简介 information_schema这张数据表保存了MySQL服务器所有数据库的信息.如数据库名,数据库的表,表栏的数据类型与访问权限等.再简单点,这台mysql服务器上,到底有哪些数据库.各个 ...

  6. Android简单文件浏览器源代码 (转)

    Android简单文件浏览器源代码 (转) activity_main .xml <LinearLayout xmlns:android="http://schemas.android ...

  7. jqgrid postData setGridParam 调用多次时查询条件累加的问题--详情页查询导致的无法在新的页面中查询

    $("#btn_search").click(function () { url = "/AMEvents/GetGridJson?evtype=1"; var ...

  8. mysql truncate drop delete的区别

    以下讨论,针对于mysql数据库. 为什么会想到这个问题呢? 因为项目中需要清除数据库的数据,而且需要实现自增的主键从0开始计数.所以想到总结一个几个常用的删除语法的差异. 可以做一个测试 建一个带有 ...

  9. java 文件上传数据库

    存储文件的数据库类型: 1.oracle :Blob,bfile类型 2.mysql:longblob类型 3.sqlserver :varbinary(Max)类型 文件都是以二进制流存入数据库的, ...

  10. checkStyle总结

    参考网站:https://code.google.com/p/testcq/wiki/CheckStyleRules 1.Variable access definition in wrong ord ...