codeforces 427 div.2 F. Roads in the Kingdom
2 seconds
256 megabytes
standard input
standard output
In the Kingdom K., there are n towns numbered with integers from 1 to n. The towns are connected by n bi-directional roads numbered with integers from 1 to n. The i-th road connects the towns ui and vi and its length is li. There is no more than one road between two towns. Also, there are no roads that connect the towns with itself.
Let's call the inconvenience of the roads the maximum of the shortest distances between all pairs of towns.
Because of lack of money, it was decided to close down one of the roads so that after its removal it is still possible to reach any town from any other. You have to find the minimum possible inconvenience of the roads after closing down one of the roads.
The first line contains the integer n (3 ≤ n ≤ 2·105) — the number of towns and roads.
The next n lines contain the roads description. The i-th from these lines contains three integers ui, vi, li (1 ≤ ui, vi ≤ n, 1 ≤ li ≤ 109) — the numbers of towns connected by the i-th road and the length of the i-th road. No road connects a town to itself, no two roads connect the same towns.
It's guaranteed that it's always possible to close down one of the roads so that all the towns are still reachable from each other.
Print a single integer — the minimum possible inconvenience of the roads after the refusal from one of the roads.
3
1 2 4
2 3 5
1 3 1
5
5
2 3 7
3 1 9
4 1 8
3 5 4
4 5 5
18
题意 :
给定n个点 n条边 (保证联通 ,边无向 ,无重边 ,无自环)
断掉某条边以后 保证联通的情况下,图上有一条最长路
求最长路的最小值
思路 :
n个联通的点 n条边
即 树上多了一个环
断掉的边只能在环上
所以 题意转化为 从环上断掉一个点以后 树上直径的最小化
首先 dfs 找出环
然后得到非环上边的最长路(求以环上点为根的子树直径)
之后得到环上点到其子树的最长路 记为 点 i 的权值 val [ i ]
样例二:
得到 当前最长直径是 点 3 的子树 长度为 7 记录下来为 L1 (我在这里错了几次)
得到每个点的权值
val [ 1 ] = 0
val [ 3 ] = 7
val [ 4 ] = 0
val [ 5 ] = 0
然后得到环上的 前缀路径和 与后缀路径和
point 1 -> 3 -> 5 -> 4 -> 1 -> 3 -> 5 -> 4
road 9 4 5 8 9 4 5
pre- > 0 9 13 18 26 35 39 44 ->
suf <- 44 35 31 26 18 9 5 0 <-
然后 容易知道 到点 i 的 “前缀和”+ “点权值” (pre [ i ] + val [ i ]) 表示 环上第一个点(上图中为1)到 i 的 子树的最长路径
由于 “树上 离任意一点最远的一定是 直径的某个端点”
这样由区间最大值就可以得到 一个直径端点 然后往 “前面” 和 “后面” 找到 离端点最远的另一个点 就是直径的第二个端点
每次的区间大小为环的长度 (表示断掉一条边以后的路径前缀和) 每次向右移动一次 得到 第二个直径 并更新 ans
区间最大值的维护可以通过线段树 维护一个前缀的 一个后缀的
最后答案输出 max(ans,L1) 即可
#include <bits/stdc++.h> #define mp make_pair
#define pb push_back
#define lson l,mid,pos<<1
#define rson mid+1,r,pos<<1|1
#define fi first
#define se second using namespace std; typedef long long LL;
typedef pair<long long ,int> pli; const long long INF = 0x3f3f3f3f3f3f3f3f; vector <int > nt[];
vector <int > cc[];
int noloop[];
int cnt[];
LL val[];
LL toval[];
LL id[];
int idfrm[];
pli tree1[<<];
pli tree2[<<];
LL pre[];
LL suf[];
int mark=;
LL zz010=;
void dfs1(int x,int fa)
{
noloop[x]=;
for (int i=;i<nt[x].size();i++){
if (fa==nt[x][i])continue;
cnt[nt[x][i]]--;
if (cnt[nt[x][i]]==)dfs1(nt[x][i],x);
}
}
LL dfs2(int x,int fa)
{
LL ret=;
LL ret2=;
for (int i=;i<nt[x].size();i++){
if (fa==nt[x][i]||noloop[nt[x][i]]==)continue;
LL tmp=dfs2(nt[x][i],x)+cc[x][i];
if (tmp>ret){
ret2=ret;
ret=tmp;
}else if (tmp>ret2)ret2=tmp;
}
zz010=max(zz010,ret+ret2);
return val[x]=ret;
}
void dfs3(int x,int fa)
{
idfrm[mark]=x;
id[x]=mark;
for (int i=;i<nt[x].size();i++){
if (noloop[nt[x][i]]||nt[x][i]==fa||id[nt[x][i]])continue;
toval[mark++]=cc[x][i];
dfs3(nt[x][i],x);
return ;
}
for (int i=;i<nt[x].size();i++){
if (id[nt[x][i]]!=)continue;
toval[mark]=cc[x][i];
return ;
}
}
void push_up(pli tree[],int pos)
{
tree[pos]=max(tree[pos<<],tree[pos<<|]);
}
void upd(pli tree[],int l,int r,int pos,int x,long long val)
{
if (l==r){
tree[pos].fi=val;
tree[pos].se=x;
return ;
}
int mid=(l+r)>>;
if (x<=mid)upd(tree,lson,x,val);
else upd(tree,rson,x,val);
push_up(tree,pos);
}
pli query(pli tree[],int l,int r,int pos,int l1,int r1)
{
if (l1>r1)return mp(-INF,);
if (l>=l1&&r1>=r){
return tree[pos];
}
pli mx=mp(-INF,);
int mid=(l+r)>>;
if (mid>=l1)mx=query(tree,lson,l1,r1);
if (mid+<=r1)mx=max(mx,query(tree,rson,l1,r1));
return mx;
}
int main()
{
int n;
scanf("%d",&n);
int a,b;
long long v;
for (int i=;i<n;i++){
scanf("%d%d%I64d",&a,&b,&v);
nt[a].pb(b);
nt[b].pb(a);
cc[a].pb(v);
cc[b].pb(v);
cnt[a]++;
cnt[b]++;
}
for (int i=;i<=n;i++){
if (nt[i].size()==)dfs1(i,-);
}
for (int i=;i<=n;i++){
if (noloop[i]==)dfs2(i,-);
}
for (int i=;i<=n;i++){
if (!noloop[i]){
dfs3(i,-);
break;
}
}
long long tmp=;
for (int i=;i<=mark;i++){
idfrm[i+mark]=idfrm[i];
toval[i+mark]=toval[i];
}
toval[]=toval[mark];
for (int i=;i<=*mark;i++){
pre[i]=pre[i-]+toval[i-];
upd(tree1,,*mark,,i,val[idfrm[i]]+pre[i]);
}
for (int i=*mark;i>=;i--){
suf[i]=suf[i+]+toval[i];
upd(tree2,,*mark,,i,val[idfrm[i]]+suf[i]);
}
LL ans=INF;
int flag=;
for (int i=;i<=mark;i++){
pli now_mx=query(tree1,,*mark,,i,i+mark-);
pli tmp1=query(tree1,,*mark,,now_mx.se+,i+mark-);
pli tmp2=query(tree2,,*mark,,i,now_mx.se-);
LL dis1=0LL,dis2=0LL,dis3=,dis4=;
if (tmp1.se!=)dis1=val[idfrm[now_mx.se]]+val[idfrm[tmp1.se]]+pre[tmp1.se]-pre[now_mx.se];
if (tmp2.se!=)dis2=val[idfrm[now_mx.se]]+val[idfrm[tmp2.se]]-pre[tmp2.se]+pre[now_mx.se];
ans=min(ans,max(dis1,dis2));
} cout<<max(ans,zz010);
return ;
}
最后 数组记得开大点 前缀和与后缀和 为 环上点数量的两倍
codeforces 427 div.2 F. Roads in the Kingdom的更多相关文章
- Codeforces 835 F. Roads in the Kingdom
\(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...
- Codeforces 835 F Roads in the Kingdom(树形dp)
F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces Round #486 (Div. 3) F. Rain and Umbrellas
Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...
- Codeforces Round #501 (Div. 3) F. Bracket Substring
题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...
- Codeforces Round #499 (Div. 1) F. Tree
Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...
- Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块
Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块 [Problem Description] ...
- CodeForces 835C - Star sky | Codeforces Round #427 (Div. 2)
s <= c是最骚的,数组在那一维开了10,第八组样例直接爆了- - /* CodeForces 835C - Star sky [ 前缀和,容斥 ] | Codeforces Round #4 ...
随机推荐
- HttpClient 同时上传多个文件及参数, 同时利用 Web Api 接收
using (System.Net.Http.HttpClient client = new System.Net.Http.HttpClient()) { client.BaseAddress = ...
- 数据库系统入门 | Not Exisits 结构的灵活应用
教材 /<数据库系统概念>第六版第三章内容 机械工程出版社:实验软件/Qracle 11g 写在前面 用下面的样例1引出我们讨论的这一类方法. 样例1:使用大学模式,用SQL写出以下查询, ...
- mysql如何用jsp代码进行数据库备份
mysql如何用jsp代码进行数据库备份 //导出 String mysql="mysqldump -uroot -proot --opt databasename > d:/test ...
- apache 单独生成模块
apache 单独生成模块 一般这种模块都是后期自己去生成的,比如一般在安装apache时都会--enable-so ,允许动态加载模块. 这个模块你可以这样去生成. 1.下载一个与当前使用的apa ...
- Android-Binder 简析
前言 对于Android来说,Binder的重要性怎么说都不为过.不管是我们的四大组件Activity.Service.BroadcastReceiver.ContentProvider,还是经常在应 ...
- JAVA常见算法题(二十)
package com.xiaowu.demo; /** * * 打印出如下图案(菱形) * * * * @author WQ * */ public class Demo20 { public st ...
- [置顶]
使用kube-proxy让外部网络访问K8S service的ClusterIP
配置方式 kubernetes版本大于或者等于1.2时,外部网络(即非K8S集群内的网络)访问cluster IP的办法是: 修改master的/etc/kubernetes/proxy,把KUBE_ ...
- x-pack破解并安装
声明:本文仅作为学习交流,请勿用于商业用途,否则后果自负.如需使用黄金或白金版X-Pack请购买正版. 1. 安装x-pack 具体安装过程参照:http://www.cnblogs.com/shao ...
- linux /boot目录下的文件分析
一. Linux 启动流程 首先说一下Linux系统大概的启动过程: 1. 主机加电后, 系统首先加载BIOS, 这个BIOS是以写在主板上的. 2. BIOS启动后,执行一些例如开机自检,硬件初始化 ...
- 20160208.CCPP体系具体解释(0018天)
程序片段(01):main.c 内容概要:PointWithOutInit #include <stdio.h> #include <stdlib.h> //01.野指针具体解 ...