time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In the Kingdom K., there are n towns numbered with integers from 1 to n. The towns are connected by n bi-directional roads numbered with integers from 1 to n. The i-th road connects the towns ui and vi and its length is li. There is no more than one road between two towns. Also, there are no roads that connect the towns with itself.

Let's call the inconvenience of the roads the maximum of the shortest distances between all pairs of towns.

Because of lack of money, it was decided to close down one of the roads so that after its removal it is still possible to reach any town from any other. You have to find the minimum possible inconvenience of the roads after closing down one of the roads.

Input

The first line contains the integer n (3 ≤ n ≤ 2·105) — the number of towns and roads.

The next n lines contain the roads description. The i-th from these lines contains three integers ui, vi, li (1 ≤ ui, vi ≤ n, 1 ≤ li ≤ 109) — the numbers of towns connected by the i-th road and the length of the i-th road. No road connects a town to itself, no two roads connect the same towns.

It's guaranteed that it's always possible to close down one of the roads so that all the towns are still reachable from each other.

Output

Print a single integer — the minimum possible inconvenience of the roads after the refusal from one of the roads.

Examples
Input
3
1 2 4
2 3 5
1 3 1
Output
5
Input
5
2 3 7
3 1 9
4 1 8
3 5 4
4 5 5
Output
18

题意 :

  给定n个点 n条边 (保证联通 ,边无向 ,无重边 ,无自环)

  断掉某条边以后 保证联通的情况下,图上有一条最长路

  求最长路的最小值

思路 :

  n个联通的点 n条边

  即 树上多了一个环

  断掉的边只能在环上

  所以 题意转化为 从环上断掉一个点以后 树上直径的最小化

  首先 dfs 找出环

  然后得到非环上边的最长路(求以环上点为根的子树直径)

  之后得到环上点到其子树的最长路 记为 点  i  的权值  val [ i ]

  样例二:

      

  得到 当前最长直径是 点 3 的子树  长度为 7   记录下来为   L1  (我在这里错了几次)

  得到每个点的权值

val   [ 1 ]  =    0

val   [ 3 ]  =    7

val   [ 4 ]  =    0

val   [ 5 ]  =    0

然后得到环上的 前缀路径和 与后缀路径和

  point     1  ->  3  ->   5  ->  4  ->  1  ->  3  ->  5  ->  4

  road         9        4        5       8       9       4        5

  pre- >    0       9        13     18     26      35     39       44  ->

  suf <-   44       35        31      26      18        9       5       0   <-

  然后  容易知道  到点 i  的  “前缀和”+ “点权值”  (pre [ i ] + val [ i ])  表示  环上第一个点(上图中为1)到 i 的 子树的最长路径

  由于  “树上 离任意一点最远的一定是  直径的某个端点”

  这样由区间最大值就可以得到 一个直径端点   然后往 “前面” 和 “后面” 找到 离端点最远的另一个点 就是直径的第二个端点

  每次的区间大小为环的长度 (表示断掉一条边以后的路径前缀和) 每次向右移动一次 得到 第二个直径  并更新 ans

  区间最大值的维护可以通过线段树      维护一个前缀的  一个后缀的

  最后答案输出 max(ans,L1)  即可

  

    

 #include <bits/stdc++.h>

 #define mp make_pair
#define pb push_back
#define lson l,mid,pos<<1
#define rson mid+1,r,pos<<1|1
#define fi first
#define se second using namespace std; typedef long long LL;
typedef pair<long long ,int> pli; const long long INF = 0x3f3f3f3f3f3f3f3f; vector <int > nt[];
vector <int > cc[];
int noloop[];
int cnt[];
LL val[];
LL toval[];
LL id[];
int idfrm[];
pli tree1[<<];
pli tree2[<<];
LL pre[];
LL suf[];
int mark=;
LL zz010=;
void dfs1(int x,int fa)
{
noloop[x]=;
for (int i=;i<nt[x].size();i++){
if (fa==nt[x][i])continue;
cnt[nt[x][i]]--;
if (cnt[nt[x][i]]==)dfs1(nt[x][i],x);
}
}
LL dfs2(int x,int fa)
{
LL ret=;
LL ret2=;
for (int i=;i<nt[x].size();i++){
if (fa==nt[x][i]||noloop[nt[x][i]]==)continue;
LL tmp=dfs2(nt[x][i],x)+cc[x][i];
if (tmp>ret){
ret2=ret;
ret=tmp;
}else if (tmp>ret2)ret2=tmp;
}
zz010=max(zz010,ret+ret2);
return val[x]=ret;
}
void dfs3(int x,int fa)
{
idfrm[mark]=x;
id[x]=mark;
for (int i=;i<nt[x].size();i++){
if (noloop[nt[x][i]]||nt[x][i]==fa||id[nt[x][i]])continue;
toval[mark++]=cc[x][i];
dfs3(nt[x][i],x);
return ;
}
for (int i=;i<nt[x].size();i++){
if (id[nt[x][i]]!=)continue;
toval[mark]=cc[x][i];
return ;
}
}
void push_up(pli tree[],int pos)
{
tree[pos]=max(tree[pos<<],tree[pos<<|]);
}
void upd(pli tree[],int l,int r,int pos,int x,long long val)
{
if (l==r){
tree[pos].fi=val;
tree[pos].se=x;
return ;
}
int mid=(l+r)>>;
if (x<=mid)upd(tree,lson,x,val);
else upd(tree,rson,x,val);
push_up(tree,pos);
}
pli query(pli tree[],int l,int r,int pos,int l1,int r1)
{
if (l1>r1)return mp(-INF,);
if (l>=l1&&r1>=r){
return tree[pos];
}
pli mx=mp(-INF,);
int mid=(l+r)>>;
if (mid>=l1)mx=query(tree,lson,l1,r1);
if (mid+<=r1)mx=max(mx,query(tree,rson,l1,r1));
return mx;
}
int main()
{
int n;
scanf("%d",&n);
int a,b;
long long v;
for (int i=;i<n;i++){
scanf("%d%d%I64d",&a,&b,&v);
nt[a].pb(b);
nt[b].pb(a);
cc[a].pb(v);
cc[b].pb(v);
cnt[a]++;
cnt[b]++;
}
for (int i=;i<=n;i++){
if (nt[i].size()==)dfs1(i,-);
}
for (int i=;i<=n;i++){
if (noloop[i]==)dfs2(i,-);
}
for (int i=;i<=n;i++){
if (!noloop[i]){
dfs3(i,-);
break;
}
}
long long tmp=;
for (int i=;i<=mark;i++){
idfrm[i+mark]=idfrm[i];
toval[i+mark]=toval[i];
}
toval[]=toval[mark];
for (int i=;i<=*mark;i++){
pre[i]=pre[i-]+toval[i-];
upd(tree1,,*mark,,i,val[idfrm[i]]+pre[i]);
}
for (int i=*mark;i>=;i--){
suf[i]=suf[i+]+toval[i];
upd(tree2,,*mark,,i,val[idfrm[i]]+suf[i]);
}
LL ans=INF;
int flag=;
for (int i=;i<=mark;i++){
pli now_mx=query(tree1,,*mark,,i,i+mark-);
pli tmp1=query(tree1,,*mark,,now_mx.se+,i+mark-);
pli tmp2=query(tree2,,*mark,,i,now_mx.se-);
LL dis1=0LL,dis2=0LL,dis3=,dis4=;
if (tmp1.se!=)dis1=val[idfrm[now_mx.se]]+val[idfrm[tmp1.se]]+pre[tmp1.se]-pre[now_mx.se];
if (tmp2.se!=)dis2=val[idfrm[now_mx.se]]+val[idfrm[tmp2.se]]-pre[tmp2.se]+pre[now_mx.se];
ans=min(ans,max(dis1,dis2));
} cout<<max(ans,zz010);
return ;
}

最后   数组记得开大点   前缀和与后缀和  为 环上点数量的两倍

  

codeforces 427 div.2 F. Roads in the Kingdom的更多相关文章

  1. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  2. Codeforces 835 F Roads in the Kingdom(树形dp)

    F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...

  3. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  4. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  5. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  6. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

  7. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  8. Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块

    Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块 [Problem Description] ​ ...

  9. CodeForces 835C - Star sky | Codeforces Round #427 (Div. 2)

    s <= c是最骚的,数组在那一维开了10,第八组样例直接爆了- - /* CodeForces 835C - Star sky [ 前缀和,容斥 ] | Codeforces Round #4 ...

随机推荐

  1. 1.11(java学习笔记)封装

    封装将内部细节封装起来,只暴露外部接口. 比如我们的电视就将复杂的内部线路用外壳封装起来,只留下外部按钮或遥控,用户只需要知道按钮或遥控的作用就可以,无需明白电视内部是如何工作. 而且封装也保障了安全 ...

  2. SQL 序号列ROW_NUMBER,RANK,DENSE_RANK、NTILE

    原文:SQL 序号列ROW_NUMBER,RANK,DENSE_RANK.NTILE SQL 2005新增加相关函数 : ROW_NUMBER,RANK,DENSE_RANK.NTILE 窗口函数 O ...

  3. [转]C++函数模板与模板函数

      1.函数模板的声明和模板函数的生成   1.1函数模板的声明 函数模板可以用来创建一个通用的函数,以支持多种不同的形参,避免重载函数的函数体重复设计.它的最大特点是把函数使用的数据类型作为参数. ...

  4. [Android Traffic] 使用缓存来避免重复的下载

    转载自: http://blog.csdn.net/kesenhoo/article/details/7395817 Redundant Downloads are Redundant[重复下载是冗余 ...

  5. python 时间 相关

    http://www.jb51.net/article/47957.htm 不管何时何地,只要我们编程时遇到了跟时间有关的问题,都要想到 datetime 和 time 标准库模块,今天我们就用它内部 ...

  6. 针对访问uri 限制ip

    在虚拟主机配置文件中加入如下字段: <filesmatch "(.*)admin(.*)">            Order deny,allow           ...

  7. #if 条件编译

    1.格式: #if constant-expression statements #elif constant-expression statements #else statements #endi ...

  8. component-scan和annotation-driven

    <context:component-scan/> 该xml配置作用是启动Spring的组件扫描功能,自动扫描base-package指定的包及其子文件下的java文件,如果扫描到有@co ...

  9. smarty在循环的时候计数来显示这是第几次循环的功能

    想必有很多人比较喜欢这个smarty循环的时候有个变量增加的功能或比较需要这个功能吧?其实不需要额外的变量,当然你也许根本用不了.我们用smarty内置的就可以了.就是smarty有foreach和s ...

  10. ITIL,是否已是昨日黄花

    首先声明自己不是ITIL方面的专家,特别是具体的规范细节,后面论述如有不当,请指正.但我为什么会提起它?主要是因为它和运维(IT服务管理)相关性太大了.早起的运维完全就是以ITIL来蓝本构建的,在当时 ...