codeforces 427 div.2 F. Roads in the Kingdom
2 seconds
256 megabytes
standard input
standard output
In the Kingdom K., there are n towns numbered with integers from 1 to n. The towns are connected by n bi-directional roads numbered with integers from 1 to n. The i-th road connects the towns ui and vi and its length is li. There is no more than one road between two towns. Also, there are no roads that connect the towns with itself.
Let's call the inconvenience of the roads the maximum of the shortest distances between all pairs of towns.
Because of lack of money, it was decided to close down one of the roads so that after its removal it is still possible to reach any town from any other. You have to find the minimum possible inconvenience of the roads after closing down one of the roads.
The first line contains the integer n (3 ≤ n ≤ 2·105) — the number of towns and roads.
The next n lines contain the roads description. The i-th from these lines contains three integers ui, vi, li (1 ≤ ui, vi ≤ n, 1 ≤ li ≤ 109) — the numbers of towns connected by the i-th road and the length of the i-th road. No road connects a town to itself, no two roads connect the same towns.
It's guaranteed that it's always possible to close down one of the roads so that all the towns are still reachable from each other.
Print a single integer — the minimum possible inconvenience of the roads after the refusal from one of the roads.
3
1 2 4
2 3 5
1 3 1
5
5
2 3 7
3 1 9
4 1 8
3 5 4
4 5 5
18
题意 :
给定n个点 n条边 (保证联通 ,边无向 ,无重边 ,无自环)
断掉某条边以后 保证联通的情况下,图上有一条最长路
求最长路的最小值
思路 :
n个联通的点 n条边
即 树上多了一个环
断掉的边只能在环上
所以 题意转化为 从环上断掉一个点以后 树上直径的最小化
首先 dfs 找出环
然后得到非环上边的最长路(求以环上点为根的子树直径)
之后得到环上点到其子树的最长路 记为 点 i 的权值 val [ i ]
样例二:

得到 当前最长直径是 点 3 的子树 长度为 7 记录下来为 L1 (我在这里错了几次)
得到每个点的权值
val [ 1 ] = 0
val [ 3 ] = 7
val [ 4 ] = 0
val [ 5 ] = 0
然后得到环上的 前缀路径和 与后缀路径和
point 1 -> 3 -> 5 -> 4 -> 1 -> 3 -> 5 -> 4
road 9 4 5 8 9 4 5
pre- > 0 9 13 18 26 35 39 44 ->
suf <- 44 35 31 26 18 9 5 0 <-
然后 容易知道 到点 i 的 “前缀和”+ “点权值” (pre [ i ] + val [ i ]) 表示 环上第一个点(上图中为1)到 i 的 子树的最长路径
由于 “树上 离任意一点最远的一定是 直径的某个端点”
这样由区间最大值就可以得到 一个直径端点 然后往 “前面” 和 “后面” 找到 离端点最远的另一个点 就是直径的第二个端点
每次的区间大小为环的长度 (表示断掉一条边以后的路径前缀和) 每次向右移动一次 得到 第二个直径 并更新 ans
区间最大值的维护可以通过线段树 维护一个前缀的 一个后缀的
最后答案输出 max(ans,L1) 即可
#include <bits/stdc++.h> #define mp make_pair
#define pb push_back
#define lson l,mid,pos<<1
#define rson mid+1,r,pos<<1|1
#define fi first
#define se second using namespace std; typedef long long LL;
typedef pair<long long ,int> pli; const long long INF = 0x3f3f3f3f3f3f3f3f; vector <int > nt[];
vector <int > cc[];
int noloop[];
int cnt[];
LL val[];
LL toval[];
LL id[];
int idfrm[];
pli tree1[<<];
pli tree2[<<];
LL pre[];
LL suf[];
int mark=;
LL zz010=;
void dfs1(int x,int fa)
{
noloop[x]=;
for (int i=;i<nt[x].size();i++){
if (fa==nt[x][i])continue;
cnt[nt[x][i]]--;
if (cnt[nt[x][i]]==)dfs1(nt[x][i],x);
}
}
LL dfs2(int x,int fa)
{
LL ret=;
LL ret2=;
for (int i=;i<nt[x].size();i++){
if (fa==nt[x][i]||noloop[nt[x][i]]==)continue;
LL tmp=dfs2(nt[x][i],x)+cc[x][i];
if (tmp>ret){
ret2=ret;
ret=tmp;
}else if (tmp>ret2)ret2=tmp;
}
zz010=max(zz010,ret+ret2);
return val[x]=ret;
}
void dfs3(int x,int fa)
{
idfrm[mark]=x;
id[x]=mark;
for (int i=;i<nt[x].size();i++){
if (noloop[nt[x][i]]||nt[x][i]==fa||id[nt[x][i]])continue;
toval[mark++]=cc[x][i];
dfs3(nt[x][i],x);
return ;
}
for (int i=;i<nt[x].size();i++){
if (id[nt[x][i]]!=)continue;
toval[mark]=cc[x][i];
return ;
}
}
void push_up(pli tree[],int pos)
{
tree[pos]=max(tree[pos<<],tree[pos<<|]);
}
void upd(pli tree[],int l,int r,int pos,int x,long long val)
{
if (l==r){
tree[pos].fi=val;
tree[pos].se=x;
return ;
}
int mid=(l+r)>>;
if (x<=mid)upd(tree,lson,x,val);
else upd(tree,rson,x,val);
push_up(tree,pos);
}
pli query(pli tree[],int l,int r,int pos,int l1,int r1)
{
if (l1>r1)return mp(-INF,);
if (l>=l1&&r1>=r){
return tree[pos];
}
pli mx=mp(-INF,);
int mid=(l+r)>>;
if (mid>=l1)mx=query(tree,lson,l1,r1);
if (mid+<=r1)mx=max(mx,query(tree,rson,l1,r1));
return mx;
}
int main()
{
int n;
scanf("%d",&n);
int a,b;
long long v;
for (int i=;i<n;i++){
scanf("%d%d%I64d",&a,&b,&v);
nt[a].pb(b);
nt[b].pb(a);
cc[a].pb(v);
cc[b].pb(v);
cnt[a]++;
cnt[b]++;
}
for (int i=;i<=n;i++){
if (nt[i].size()==)dfs1(i,-);
}
for (int i=;i<=n;i++){
if (noloop[i]==)dfs2(i,-);
}
for (int i=;i<=n;i++){
if (!noloop[i]){
dfs3(i,-);
break;
}
}
long long tmp=;
for (int i=;i<=mark;i++){
idfrm[i+mark]=idfrm[i];
toval[i+mark]=toval[i];
}
toval[]=toval[mark];
for (int i=;i<=*mark;i++){
pre[i]=pre[i-]+toval[i-];
upd(tree1,,*mark,,i,val[idfrm[i]]+pre[i]);
}
for (int i=*mark;i>=;i--){
suf[i]=suf[i+]+toval[i];
upd(tree2,,*mark,,i,val[idfrm[i]]+suf[i]);
}
LL ans=INF;
int flag=;
for (int i=;i<=mark;i++){
pli now_mx=query(tree1,,*mark,,i,i+mark-);
pli tmp1=query(tree1,,*mark,,now_mx.se+,i+mark-);
pli tmp2=query(tree2,,*mark,,i,now_mx.se-);
LL dis1=0LL,dis2=0LL,dis3=,dis4=;
if (tmp1.se!=)dis1=val[idfrm[now_mx.se]]+val[idfrm[tmp1.se]]+pre[tmp1.se]-pre[now_mx.se];
if (tmp2.se!=)dis2=val[idfrm[now_mx.se]]+val[idfrm[tmp2.se]]-pre[tmp2.se]+pre[now_mx.se];
ans=min(ans,max(dis1,dis2));
} cout<<max(ans,zz010);
return ;
}
最后 数组记得开大点 前缀和与后缀和 为 环上点数量的两倍
codeforces 427 div.2 F. Roads in the Kingdom的更多相关文章
- Codeforces 835 F. Roads in the Kingdom
\(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...
- Codeforces 835 F Roads in the Kingdom(树形dp)
F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces Round #486 (Div. 3) F. Rain and Umbrellas
Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...
- Codeforces Round #501 (Div. 3) F. Bracket Substring
题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...
- Codeforces Round #499 (Div. 1) F. Tree
Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...
- Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块
Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块 [Problem Description] ...
- CodeForces 835C - Star sky | Codeforces Round #427 (Div. 2)
s <= c是最骚的,数组在那一维开了10,第八组样例直接爆了- - /* CodeForces 835C - Star sky [ 前缀和,容斥 ] | Codeforces Round #4 ...
随机推荐
- 记录git rebase用法
git 是基于文件系统的版本管理工具,文档和详细介绍可以查看git 一.git commit --amend 如果你对文件做了修改需要和上一次的修改合并为一个change git add . git ...
- springMVC初探视图解析器——ResourceBundleViewResolver
视图解析器ResourceBundleViewResolver是根据proterties文件来找对应的视图来解析”逻辑视图“的, 该properties文件默认是放在classpath路径下的view ...
- [置顶]
kubernetes资源类型--pod和job
pod Pod是K8S的最小操作单元,一个Pod可以由一个或多个容器组成:整个K8S系统都是围绕着Pod展开的,比如如何部署运行Pod.如何保证Pod的数量.如何访问Pod等. 特点 Pod是能够被创 ...
- Hadoop 变更磁盘的方法总结
背景说明HDFS文件系统使用一段时间后,可能会出现磁盘空间不足或是磁盘损坏的现象,此时需要对DataNode节点的磁盘进行扩充或是更换,本文对操作流程做一个简单的总结 操作步骤 挂载硬盘 添加硬盘的操 ...
- 2017.4.26 慕课网--Java 高并发秒杀API配置文件(持续更新)
新建项目,new maven project. <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=&q ...
- 转:Spring mvc中@RequestMapping 6个基本用法小结
Spring mvc中@RequestMapping 6个基本用法小结 发表于3年前(2013-02-17 19:58) 阅读(11698) | 评论(1) 13人收藏此文章, 我要收藏 赞3 4 ...
- Binder与Servicede关联
Binder是Android上IPC的基础和关键.那么在使用过程中,大多数时候看到的是client与server的结构,即Server通过创建服务来向Client提供服务,Client则通过绑定到Bi ...
- 倍福TwinCAT(贝福Beckhoff)基础教程2.2 TwinCAT常见类型使用和转换_字符串
一般声明字符串都会加一个长度的限制,比如A:STRING(80);至于真实的字符串长度不要超过这个限制即可 在测试中,我演示了两个字符串的方法,CONCAT字符串拼接和REPLACE字符串替换.拼 ...
- javascript - 封装jsonp
jsonp牵扯到同源策略.跨域等问题,这里不细说了. 实现就是创建动态的script标签来请求后台地址: 示例: jsonp('xxx.php', { uid: 1 }, function (res) ...
- Python魔法师
第一章:数据结构和算法 1.1 查找最大或者最小的n个元素 heapq 模块的两个函数 nlargest() nsmallest() import heapq nums = [1, 8, 2, 23 ...