bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版
Time Limit: 80 Sec Memory Limit: 512 MB
Submit: 1184 Solved: 535
[Submit][Status][Discuss]
Description

Input
Output
Sample Input
3 3
Sample Output
HINT
1<=N,M,K<=5000000,1<=T<=2000
Source
#include<bits/stdc++.h>
#pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring> #define ll long long
#define inf 1000000000
#define mod 1000000007
#define N 5000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int F[N],f[N],flag[N],k,tot,p[N],ans;
inline int gpow(int x,int y)
{
int ans=;
while (y)
{
if (y&) ans=(ll)ans*x%mod;
y>>=;x=(ll)x*x%mod;
}
return ans;
}
void preparation()
{
F[]=;
for (int i=;i<N;i++)
{
if (!flag[i]){f[i]=gpow(i,k);F[i]=f[i]-;p[++tot]=i;}
for (int j=;j<=tot&&i*p[j]<N;j++)
{
flag[i*p[j]]=;
if (i%p[j])F[i*p[j]]=(ll)F[i]*F[p[j]]%mod;
else{F[i*p[j]]=(ll)F[i]*f[p[j]]%mod;break;}
}
}
for (int i=;i<N;i++) (F[i]+=F[i-])%=mod;
}
int main()
{
int Case=read();k=read();
preparation();
while (Case--)
{
int n=read(),m=read();if (n>m) swap(n,m);ans=;
for (int i=,pos=;i<=n;i=pos+)
{
pos=min(n/(n/i),m/(m/i));
(ans+=1LL*(n/i)*(m/i)%mod*(F[pos]-F[i-])%mod)%=mod;
}
printf("%d\n",(ans+mod)%mod);
}
return ;
}
bzoj 4407 于神之怒加强版 (反演+线性筛)的更多相关文章
- bzoj 4407 于神之怒加强版 —— 反演+筛积性函数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 推导如这里:https://www.cnblogs.com/clrs97/p/5191 ...
- bzoj 4407 于神之怒加强版——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 \( ans = \sum\limits_{D=1}^{min(n,m)}\frac{ ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】
看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- ●BZOJ 4407 于神之怒加强版
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...
- bzoj 3309 DZY Loves Math——反演+线性筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然 ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
随机推荐
- IBM Rational Software Architect V9.0安装图解
IBM Rational Software Architect(RSA) -- IBM软件开发平台的一部分 – 是IBM在2003年二月并购Rational以来,首次发布的Rational产品.改进过 ...
- 一些 Markdown 语法
参考于: https://www.jianshu.com/p/b03a8d7b1719 [先挖个坑,来日再填]
- wordCount的执行流程
我们对于wordCount的这个流程,在清晰不过了,不过我们在使用spark以及hadoop本身的mapReduce的时候,我们是否理解其中的原理呢,今天我们就来介绍一下wordCount的执行原理, ...
- 多个".h"文件中声明及定义 全局变量和函数
一.".h"文件必须以如下格式书写 例:文件<CZ_efg_hi.h"> ------------文件内容----------- #ifndef CZ_Efg ...
- HttpMessageConverter进行加密解密
技术交流群: 233513714 使用自定义HttpMessageConverter对返回内容进行加密 今天上午技术群里的一个人问” 如何在 Spring MVC 中统一对返回的 Json 进行加密? ...
- dealloc时取weakself引起崩溃
今天无意这中遇到一个奇怪的崩溃,先上引起崩溃的代码: - (void)dealloc { __weak __typeof(self)weak_self = self; NSLog(@"%@& ...
- 《Cracking the Coding Interview》——第7章:数学和概率论——题目2
2014-03-20 01:59 题目:有n只蚂蚁在正n边形的n个顶点,同时以同速率开始沿着边走.每只蚂蚁走的方向是随机的,那么这些蚂蚁至少有两只发生碰撞的概率是多少. 解法:只有所有蚂蚁都往一个方向 ...
- CSS系列(7)CSS类选择器Class详解
这一篇文章,以笔记形式写. 1, CSS 类选择器详解 http://www.w3school.com.cn/css/css_selector_class.asp 知识点: (1) 使用类选择 ...
- 自动化测试环境搭建--Python及selenium
安装pyhton 访问Python官网:http://www.python.org 下载页Windows下找到适合64位系统的版本 下载后双击安装 安装后查看计算机->属性->高级系统设置 ...
- NGUI-UIProgressBar,UIScrollBar,UISlider
UIProgressBar是UIScrollBar和UISlider的基类 1.先来看下UIProgressBar(进度条)的使用 层次: progressBar的Inspector视图: 而fore ...