[HNOI2007]最小矩形覆盖

Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge
Submit: 2081  Solved: 920
[Submit][Status][Discuss]

Description

给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,
输出所求矩形的面积和四个顶点坐标
 

Input

第一行为一个整数n(3<=n<=50000)
从第2至第n+1行每行有两个浮点数,表示一个顶点的x和y坐标,不用科学计数法
 

Output

第一行为一个浮点数,表示所求矩形的面积(精确到小数点后5位),
接下来4行每行表示一个顶点坐标,要求第一行为y坐标最小的顶点,
其后按逆时针输出顶点坐标.如果用相同y坐标,先输出最小x坐标的顶点

Sample Input

6 1.0 3.00000
1 4.00000
2.0000 1
3 0.0000
3.00000 6
6.0 3.0

Sample Output

18.00000
3.00000 0.00000
6.00000 3.00000
3.00000 6.00000
0.00000 3.00000

HINT

 

Source

[Submit][Status][Discuss]

HOME Back

首先有一个结论,矩形的一条边一定在凸包上!!!
枚举凸包上的边
用旋转卡壳在凸包上找矩形另外三点。。
差不多吧,其它三个点可以找的吧,而且也是有单调性的。
 #pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define eps 0.00000001
#define N 50007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,tot;
double ans=1e60;
struct P
{
double x,y;
P(){}
P(double _x,double _y):x(_x),y(_y){}
friend bool operator<(P a,P b){return fabs(a.y-b.y)<eps?a.x<b.x:a.y<b.y;}
friend bool operator==(P a,P b){return fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps;}
friend bool operator!=(P a,P b){return !(a==b);}
friend P operator+(P a,P b){return P(a.x+b.x,a.y+b.y);}
friend P operator-(P a,P b){return P(a.x-b.x,a.y-b.y);}
friend double operator*(P a,P b){return a.x*b.y-a.y*b.x;}
friend P operator*(P a,double b){return P(a.x*b,a.y*b);}
friend double operator/(P a,P b){return a.x*b.x+a.y*b.y;}
friend double dis(P a){return sqrt(a.x*a.x+a.y*a.y);}
}p[N],q[N],t[]; bool cmp(P a,P b)
{
double t=(a-p[])*(b-p[]);
if(fabs(t)<eps)return dis(p[]-a)-dis(p[]-b)<;
return t>;
}
void Graham()
{
for (int i=;i<=n;i++)
if(p[i]<p[])swap(p[i],p[]);
sort(p+,p+n+,cmp);
q[++tot]=p[];
for (int i=;i<=n;i++)
{
while(tot>&&(q[tot]-q[tot-])*(p[i]-q[tot])<eps)tot--;
q[++tot]=p[i];
}
q[]=q[tot];//凸包是一个回路。
}
void RC()
{
int l=,r=,p=;
double L,R,D,H;
for (int i=;i<tot;i++)
{
D=dis(q[i]-q[i+]);
while((q[i+]-q[i])*(q[p+]-q[i])-(q[i+]-q[i])*(q[p]-q[i])>-eps)p=(p+)%tot;
while((q[i+]-q[i])/(q[r+]-q[i])-(q[i+]-q[i])/(q[r]-q[i])>-eps)r=(r+)%tot;
if(i==)l=r;
while((q[i+]-q[i])/(q[l+]-q[i])-(q[i+]-q[i])/(q[l]-q[i])<eps)l=(l+)%tot;
L=(q[i+]-q[i])/(q[l]-q[i])/D,R=(q[i+]-q[i])/(q[r]-q[i])/D;
H=(q[i+]-q[i])*(q[p]-q[i])/D;
if(H<)H=-H;
double tmp=(R-L)*H;
if(tmp<ans)
{
ans=tmp;
t[]=q[i]+(q[i+]-q[i])*(R/D);
t[]=t[]+(q[r]-t[])*(H/dis(t[]-q[r]));
t[]=t[]-(t[]-q[i])*((R-L)/dis(q[i]-t[]));
t[]=t[]-(t[]-t[]);
}
}
}
int main()
{
n=read();
for (int i=;i<=n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
Graham();
RC();
printf("%.5lf\n",ans);
int fir=;
for (int i=;i<=;i++)
if(t[i]<t[fir])fir=i;
for (int i=;i<=;i++)
printf("%.5lf %.5lf\n",t[(i+fir)%].x,t[(i+fir)%].y);
}

bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包的更多相关文章

  1. 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)

    题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...

  2. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

  3. 【bzoj1185】[HNOI2007]最小矩形覆盖 (旋转卡壳)

    给你一些点,让你用最小的矩形覆盖这些点 首先有一个结论,矩形的一条边一定在凸包上!!! 枚举凸包上的边 用旋转卡壳在凸包上找矩形另外三点... 注意精度问题 #include<cstdio> ...

  4. BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子

    来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...

  5. bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...

  6. BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)

    BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...

  7. BZOJ1185 [HNOI2007]最小矩形覆盖 【旋转卡壳】

    题目链接 BZOJ1185 题解 最小矩形一定有一条边在凸包上,枚举这条边,然后旋转卡壳维护另外三个端点即可 计算几何细节极多 维护另外三个端点尽量不在这条边上,意味着左端点尽量靠后,右端点尽量靠前, ...

  8. 2018.10.18 bzoj1185: [HNOI2007]最小矩形覆盖(旋转卡壳)

    传送门 不难看出最后的矩形一定有一条边与凸包某条边重合. 因此先求出凸包,然后旋转卡壳求出当前最小矩形面积更新答案. 代码: #include<bits/stdc++.h> #define ...

  9. 【洛谷 P3187】 [HNOI2007]最小矩形覆盖 (二维凸包,旋转卡壳)

    题目链接 嗯,毒瘤题. 首先有一个结论,就是最小矩形一定有条边和凸包重合.脑补一下就好了. 然后枚举凸包的边,用旋转卡壳维护上顶点.左端点.右端点就好了. 上顶点用叉积,叉积越大三角形面积越大,对应的 ...

随机推荐

  1. Centos7 使用LVM进行新加磁盘管理

    centos7使用LVM管理一块新的磁盘   注意!文中凡是带#的都是命令标志.   一些重要概念: LV(Logical Volume)- 逻辑卷, VG(Volumne Group)- 卷组, P ...

  2. php面向对象(2)值传递

    PHP中值传递方式,2中 值传递:传递的时候,拷贝的是数据本身.默认都是值传递 结果:传递完成,有了2份同样的数据,且2个变量“相互独立”,不会相互影响 引用传递:传递的时候,拷贝的是引用关系(数据的 ...

  3. B1081 检查密码 (15分)

    B1081 检查密码 (15分) 本题要求你帮助某网站的用户注册模块写一个密码合法性检查的小功能.该网站要求用户设置的密码必须由不少于6个字符组成,并且只能有英文字母.数字和小数点 .,还必须既有字母 ...

  4. BFS例题:A计划

    ContribContrib/a11y/accessibility-menu.js 关于 BFS要点: 1.若为可化为的坐标系图形,可用结构体存储其x值,y值和步数.(一般开now 和 next ,n ...

  5. [CodeForces948D]Perfect Security(01字典树)

    Description 题目链接 Solution 01字典树模板题,删除操作用个数组记录下就行了 Code #include <cstdio> #include <algorith ...

  6. Hive 压缩技术Data Compression

    Mapreducwe 执行流程 :input > map > shuffle > reduce > output 压缩执行时间,map 之后,压缩,数据存储在本地磁盘,减少磁盘 ...

  7. 3226: [Sdoi2008]校门外的区间

    链接 思路 bug漫天飞... 维护一颗线段树,支持区间赋值,和区间异或.因为会处理到一些方括号还是圆括号的问题,所以对于每一个下标都乘2,假设中间有一个.5即可,都变成了方括号,输出在处理一下. U ...

  8. 洛谷P1605 迷宫

    迷宫 题目链接 这道题就是一道简单的dfs计方案数qwq. 我的思路是把表初始化为1,再将障碍改为0,因为在全局定义中数组会直接初始化为0,所以就少去了对边界的特判. next数组加循环可以减少代码量 ...

  9. laravel5.5事件广播系统

    目录 1. 定义广播事件 1.1 广播名称 1.2 广播数据 1.3 广播队列 1.4 广播条件 2. 频道授权 2.1 定义授权路由 2.2 定义授权回调 3. 对事件进行广播 3.1 可以使用ev ...

  10. Android学习笔记(一)之仿正点闹钟时间齿轮滑动的效果

    看到正点闹钟上的设置时间的滑动效果非常好看,自己就想做一个那样的,在网上就开始搜资料了,看到网上有的齿轮效果的代码非常多,也非常难懂,我就决定自己研究一下,现在我就把我的研究成果分享给大家.我研究的这 ...