题目链接

分析:

这是一张完全图,并且边的权值是由点的权值$xor$得到的,所以我们考虑贪心的思想,考虑$kruskal$的过程选取最小的边把两个连通块合并,所以我们可以模仿$kruskal$的过程,倒着做$kruskal$,设定当前的最高位为$d$,我们把点集分为两个集合,$s$集合代表$d$位为$1$的点,$t$集合代表$d$位为$0$的点,就是$st$两个连通块,考虑这两个连通块的连接,把$t$连通块建出一棵$trie$树,然后枚举$s$集合中的点,去查找最小边,然后统计最小边的数量,递归解决$st$两个连通块,最后统计方案数的时候就是乘法原理...

为什么按照每一位的$01$来划分集合?我们考虑现在把$s$拆成两个连通块,这样一共有三个连通块,如果按照贪心的思想,一定是先连接$s$的连通块,因为最高位一定是$0$,这样边比较小...

需要注意的细节就是如果有很多相同的点,并且这张子图是完全图,那么这就是一个完全图生成树计数的问题,根据$prufer$可以得出点数为$n$的完全图生成树计数为$n^{n-2}$...证明请见:http://www.matrix67.com/blog/archives/682

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define pa pair<int,int>
#define inf 0x3f3f3f3f
#define mp make_pair
using namespace std; const int maxn=100000+5,mod=1e9+7; int n,tot,anscnt,a[maxn],s[maxn],t[maxn],fac[maxn];
long long sum; struct Trie{
int cnt,nxt[2];
}tr[maxn*30]; inline int read(void){
char ch=getchar();int x=0;
while(!(ch>='0'&&ch<='9')) ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
} inline void init(void){
for(int i=0;i<=tot;i++)
tr[i].nxt[0]=tr[i].nxt[1]=tr[i].cnt=0;
tot=0;
} inline void insert(int x){
int p=0;
for(int i=30,y;i>=0;i--){
y=(x>>i)&1;
if(!tr[p].nxt[y])
tr[p].nxt[y]=++tot;
p=tr[p].nxt[y];
}
tr[p].cnt++;
} inline pa find(int x){
int p=0,ans=0;
for(int i=30,y;i>=0;i--){
y=(x>>i)&1;
if(tr[p].nxt[y]) p=tr[p].nxt[y],ans|=y<<i;
else p=tr[p].nxt[y^1],ans|=(y^1)<<i;
}
return mp(ans^x,tr[p].cnt);
} inline int power(int x,int y){
int res=1;
while(y){
if(y&1) res=1LL*res*x%mod;
x=1LL*x*x%mod,y>>=1;
}
return res;
} inline void solve(int l,int r,int dep){
if(l>=r) return;
if(dep<0){
if(r-l+1>=2)
anscnt=1LL*anscnt*power(r-l+1,r-l-1)%mod;
return;
}
int cnt1=0,cnt2=0;
for(int i=l;i<=r;i++)
if((a[i]>>dep)&1) s[cnt1++]=a[i];
else t[cnt2++]=a[i];
for(int i=0;i<cnt1;i++) a[l+i]=s[i];
for(int i=0;i<cnt2;i++) a[l+cnt1+i]=t[i];
init();pa tmp;int ans=inf,cnt=0;
for(int i=0;i<cnt2;i++) insert(t[i]);
for(int i=0;i<cnt1;i++){
tmp=find(s[i]);
if(tmp.first<ans)
ans=tmp.first,cnt=tmp.second;
else if(tmp.first==ans)
cnt+=tmp.second;
}
if(sum!=inf&&cnt) sum+=ans,anscnt=1LL*cnt*anscnt%mod;
solve(l,l+cnt1-1,dep-1);solve(l+cnt1,r,dep-1);
} signed main(void){
n=read(),anscnt=1;fac[0]=1;
for(int i=1;i<=n;i++) fac[i]=1LL*fac[i-1]*i%mod;
for(int i=1;i<=n;i++) a[i]=read();
solve(1,n,30);
printf("%lld\n%d\n",sum,anscnt);
return 0;
}

By NeighThorn

51Nod 1601 完全图的最小生成树计数的更多相关文章

  1. 「51Nod 1601」完全图的最小生成树计数 「Trie」

    题意 给定\(n\)个带权点,第\(i\)个点的权值为\(w_i\),任意两点间都有边,边权为两端点权的异或值,求最小生成树边权和,以及方案数\(\bmod 10^9 + 7\) \(n \leq 1 ...

  2. 51Nod1601 完全图的最小生成树计数

    传送门 我居然忘写题解啦!(记忆废) 不管怎么说,这题还算是一道好题啊……你觉得敦爷出的题会有水题么 …… 这题比较容易把人误导到Boruvka算法之类的东西上去(我们机房去刚D题的人一开始大多也被误 ...

  3. 51Nod1601 完全图的最小生成树计数 Trie Prufer编码

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1601.html 题目传送门 - 51Nod1601 题意 题解 首先我们考虑如何求答案. 我们将所有 ...

  4. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

  5. 树的Prufer 编码和最小生成树计数

      Prufer数列 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2.它可以通过简单的迭代方 ...

  6. 【bzoj1016】 JSOI2008—最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...

  7. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  8. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  9. 【BZOJ】【1016】【JSOI2008】最小生成树计数

    Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...

随机推荐

  1. c#常用数据结构解析【转载】

    引用:http://blog.csdn.net/suifcd/article/details/42869341 前言:可能去过小匹夫博客的盆油们读过这篇对于数据结构的总结,但是小匹夫当时写那篇文章的时 ...

  2. python__系统 : socket_TCP相关

    tcp和udp对比起来.还是tcp相对稳定一些,但是因为有三次挥手和四次握手,以及确认包(ack)的存在,可能在速度上会比udp慢. 用python的socket模块可以建立tcp服务端: from ...

  3. Reward HDU - 2647

    传送门     Dandelion's uncle is a boss of a factory. As the spring festival is coming , he wants to dis ...

  4. python——“/”运算符和“//”运算符的区别

    首先先看单斜杆的用法:举几个例子 >>> print(5/3),type(5/3)1.6666666666666667(None, <class 'float'>) &g ...

  5. Android 渗透小知识点

    客户端用于 ADB 通信的默认端口始终是 5037,设备使用从 5555 到 5585 的端口 adb devices用于显示所有已连接设备, 有时候会出现一些问题, 这时候需要使用adb kill- ...

  6. TouTiao开源项目 分析笔记15 新闻详情之两种类型的实现

    1.预览效果 1.1.首先看一下需要实现的效果. 第一种,文字类型新闻. 第二种,图片类型新闻. 1.2.在NewsArticleTextViewBinder中设置了点击事件 RxView.click ...

  7. 3,Linux入门

    操作系统的分类 Windows系列操作系统,Unix类操作系统,Linux类操作系统,Mac操作系统 提问:为什么要去学习Linux? 同学甲可能要问,超哥你介绍了这么多有关Linux的知识,但我还是 ...

  8. 5. css定位 居中

    1.准备工作 (1)添加背景图片 background: url('images/grass.png') (2)背景图片格式 background-size:contain; #完全限制在方框 #co ...

  9. FastJson 打Release 包解析失败

    debug 的时候,fastJson 解析数据正常.但是打了release 的时候,解析的List 总是null. 找了半天,发现,是fastJson 是对泛型有问题. 解决办法: -keepattr ...

  10. android gradle.properties

    gradle.properties 里面配置的东西,在gradle 文件里面可以直接引用. 例如: 在你工程根目录的gradle.properties 文件里面 可以这样配置: ## Project- ...