需求:读取指定目录的数据,并实现单词计数的功能

实现方案

  Spout来读取指定目录的数据,作为后续Bolt处理的input

  使用一个Bolt把input 的数据,切割分开,我们按照逗号进分割

  使用一个Bolt来进行最终的单词次数统计操作并输出

拓扑设计:DataSourceSpout ==>SpiltBolt ==>CountBolt

Storm编程注意,Topology,Spout,Bolt等命名不能重复,伤到集群需要注意出现重复命名,会报错的。

package com.imooc.bigdata;

import org.apache.commons.io.FileUtils;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values; import java.io.File;
import java.io.IOException;
import java.util.*; /**
* 使用Storm完成词频统计功能
*/
public class LocalWordCountStormTopology {
public static class DataSourceSpout extends BaseRichSpout{
private SpoutOutputCollector collector; @Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
} /**
* 业务逻辑
* 1) 读取指定目录文件夹下的数据:E:\iso\linux
* 2) 把每一行的数据发射出去
*/
@Override
public void nextTuple() { // 获取所有文件
Collection<File> files = FileUtils.listFiles(new File("E:\\iso\\linux"), new String[]{"txt"}, true);
for (File file: files){
try {
// 获取文件中的所有内容
List<String> lines = FileUtils.readLines(file); // 获取文件中的每行的内容
for (String line: lines){ // 发射出去
this.collector.emit(new Values(line));
} // TODO... 数据处理完成之后,改名,否则一直重复执行
FileUtils.moveFile(file, new File(file.getAbsolutePath()+System.currentTimeMillis()));
} catch (IOException e) {
e.printStackTrace();
}
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("line")); }
} /**
* 对数据进行分割
*/
public static class SplitBolt extends BaseRichBolt{
private OutputCollector collector; @Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
} /**
* 业务逻辑:
* line: 对line进行分割,按逗号进行分割
* @param input
*/
@Override
public void execute(Tuple input) {
String line = input.getStringByField("line");
String[] words = line.split(","); for (String word: words){
this.collector.emit(new Values(word));
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
} /**
* 词频汇总Bolt
*/
public static class WordCountBlot extends BaseRichBolt{ @Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { } Map<String, Integer> map = new HashMap<String, Integer>();
/**
* 业务逻辑:
* 1)获取每个单词
* 2)对所有单词进行汇总
* 3)输出
* @param input
*/
@Override
public void execute(Tuple input) { // 1)获取每个单词
String word = input.getStringByField("word");
Integer count = map.get(word);
if (count == null){
count = 0;
}
count ++; // 2)对所有单词进行汇总
map.put(word, count); // 3)输出
System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~");
Set<Map.Entry<String, Integer>> entries = map.entrySet();
for (Map.Entry<String, Integer> entry: entries) {
System.out.println(entry);
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { }
} public static void main(String[] args) { // 通过TopologyBuilder根据Spout和Bilt构建Topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("DataSourceSpout", new DataSourceSpout());
builder.setBolt("SplitBolt", new SplitBolt()).shuffleGrouping("DataSourceSpout");
builder.setBolt("WordCountBlot", new WordCountBlot()).shuffleGrouping("SplitBolt"); // 创建本地集群
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalWordCountStormTopology", new Config(), builder.createTopology()); }
}

Storm- 使用Storm实现词频汇总的更多相关文章

  1. 分布式流式处理框架:storm简介 + Storm术语解释

    简介: Storm是一个免费开源.分布式.高容错的实时计算系统.它与其他大数据解决方案的不同之处在于它的处理方式.Hadoop 在本质上是一个批处理系统,数据被引入 Hadoop 文件系统 (HDFS ...

  2. 【Storm】storm安装、配置、使用以及Storm单词计数程序的实例分析

    前言:阅读笔记 storm和hadoop集群非常像.hadoop执行mr.storm执行topologies. mr和topologies最关键的不同点是:mr执行终于会结束,而topologies永 ...

  3. twitter storm学习 - 安装部署问题汇总

    已经碰到的或者将来碰到的关于安装部署方面的问题以及解决方法,先挖个坑 1.提交的topology在admin界面上看emitted始终都是0,查看日志发现有如下错误: worker [ERROR] E ...

  4. Storm Windowing storm滑动窗口简介

    Storm Windowing 简介 Storm可同时处理窗口内的所有tuple.窗口可以从时间或数量上来划分,由如下两个因素决定: 窗口的长度,可以是时间间隔或Tuple数量: 滑动间隔(slidi ...

  5. storm学习-storm入门

    超好资料: 英文:https://github.com/xetorthio/getting-started-with-storm/blob/master/ch03Topologies.asc 中文:h ...

  6. 【Storm】Storm实战之频繁二项集挖掘

    一.前言 针对大叔据实时处理的入门,除了使用WordCount示例之外,还需要相对更深入点的示例来理解Storm,因此,本篇博文利用Storm实现了频繁项集挖掘的案例,以方便更好的入门Storm. 二 ...

  7. Storm入门-Storm与Spark对比

    作为一名程序员通病就是不安分,对业界的技术总要折腾一番,哪怕在最终实际工作中应用到的就那么一点.最近自己准备入门Storm学习,关于流式大数据框架目前比较流行的有Spark和Storm等,在入门之前, ...

  8. 【Storm】Storm实战之频繁二项集挖掘(附源码)

    一.前言 针对大叔据实时处理的入门,除了使用WordCount示例之外,还需要相对更深入点的示例来理解Storm,因此,本篇博文利用Storm实现了频繁项集挖掘的案例,以方便更好的入门Storm. 二 ...

  9. storm之 Storm 工作原理

    Storm 工作原理 Storm简介 1.Storm是一套分布式的.可靠的,可容错的用于处理流式数据的系统. 2.Storm也是基于C/S架构来进行工作的,C负责将数据处理的方式的jar(Topolo ...

随机推荐

  1. iOS lipo 移除i386 x86_64两个平台

    由于 iOS 编译的特殊性,为了方便开发者使用,我们将 i386 x86_64 armv7 arm64 几个平台都合并到了一起, 所以使用动态库上传appstore时需要将i386 x86_64两个平 ...

  2. dedecms织梦如何调用指定的多个栏目导航

    {dede:channelartlist row='2' typeid='1,2这里输入多个指定的栏目ID' } <li><a href='{dede:field name='typ ...

  3. es6 初始化样式加载到head中

    Demo1:function loadCss(css) { css.forEach((path)=>{ console.log($('<link/>', { rel: 'styles ...

  4. 【JMeter4.0学习(七)】之配置元素

    目录 CSV Data Set Config HTTP Cookie管理器 HTTP信息头管理器 JDBC Connection Configuration 用户定义的变量 计数器 一.CSV Dat ...

  5. java程序优化

    程序代码优化要点: 字符串优化:分析String源码,了解String常用方法,使用StringBuffer.StringBuilder. List.Map.Set优化:分析常用ArrayList.L ...

  6. unittest 结合 ddt

    数据驱动测试ddt,使用的重点: 1.@ddt.ddt2.@ddt.data(*zip(range(10),range(10,20)))       注意一定要带* 3.@ddt.unpack # c ...

  7. 多媒体开发之rtp 打包发流---同网段其他机子sdp 播放不了

    (1) (2) (3) -------------author:pkf ------------------time:2015-1-6 后面发现是connection 的server 地址是指定的 导 ...

  8. saltstack内置执行模块useradd

    useradd模块用于命令行管理用户 salt.modules.useradd.add(name, uid=None, gid=None, groups=None, home=None, shell= ...

  9. C# .Net 下 x86使用大内存的处理

    /LARGEADDRESSAWARE 选项通知链接器应用程序可处理大于 2 GB 的地址. 在 64 位编译器中,默认情况下启用此选项. 在 32 位编译器中,如果未在链接器行上指定 /LARGEAD ...

  10. ASIHTTP 框架,同步、 异步请求、 上传 、 下载

    ASIHTTPRequest详解 ASIHTTPRequest 是一款极其强劲的 HTTP 访问开源项目.让简单的 API 完成复杂的功能,如:异步请求,队列请求,GZIP 压缩,缓存,断点续传,进度 ...