先考虑一下一个集合怎么用 \(O(n)\) 时间求出来,然后用主席树推广到一个序列就可以了。大致思想就是考虑一个数的权值和它前面的数的和的关系。

#include <algorithm>
#include <iostream>
#include <cstdio>
using namespace std;
int n, a[100005], cnt, b[100005], m, uu, vv, rot[100005], tot;
struct Node{
int l, r, sum;
}nd[5000005];
int build(int l, int r){
int re=++tot;
if(l==r) ;
else{
int mid=(l+r)>>1;
if(l<=mid) nd[re].l = build(l, mid);
if(mid<r) nd[re].r = build(mid+1, r);
}
return re;
}
int update(int pre, int l, int r, int x){
int re=++tot;
nd[re] = nd[pre];
nd[re].sum += b[x];
if(l==r) ;
else{
int mid=(l+r)>>1;
if(x<=mid) nd[re].l = update(nd[pre].l, l, mid, x);
if(mid<x) nd[re].r = update(nd[pre].r, mid+1, r, x);
}
return re;
}
int query(int pre, int now, int l, int r, int x, int y){
if(b[l]>=x && b[r]<=y)
return nd[now].sum-nd[pre].sum;
else if(l==r)
return 0;
else{
int mid=(l+r)>>1;
int re=0;
if(x<=b[mid]) re += query(nd[pre].l, nd[now].l, l, mid, x, y);
if(b[mid]<y) re += query(nd[pre].r, nd[now].r, mid+1, r, x, y);
return re;
}
}
int getAns(int uu, int vv){
int sum=0, lst=0;
while(true){
int tmp=query(rot[uu-1], rot[vv], 1, cnt, lst+1, sum+1);
if(!tmp)
return sum+1;
lst = sum + 1;
sum += tmp;
}
}
int main(){
cin>>n;
for(int i=1; i<=n; i++){
scanf("%d", &a[i]);
b[i] = a[i];
}
sort(b+1, b+1+n);
cnt = unique(b+1, b+1+n) - b - 1;
for(int i=1; i<=n; i++)
a[i] = lower_bound(b+1, b+1+cnt, a[i]) - b;
rot[0] = build(1, cnt);
for(int i=1; i<=n; i++)
rot[i] = update(rot[i-1], 1, cnt, a[i]);
cin>>m;
while(m--){
scanf("%d %d", &uu, &vv);
printf("%d\n", getAns(uu, vv));
}
return 0;
}

loj2174 「FJOI2016」神秘数的更多相关文章

  1. 「FJOI2016」神秘数 解题报告

    「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...

  2. @loj - 2174@ 「FJOI2016」神秘数

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一个可重复数字集合 S 的神秘数定义为最小的不能被 S 的子集的 ...

  3. 【LOJ】#2174. 「FJOI2016」神秘数

    题解 这道题的结论很显然= = 就是暴力求的话,把一个区间的数排一下序,如果当前这个数大于前面所有数的前缀和+1,那么前缀和+1即我们所求的答案 那么我们设置一个当前答案(初始为1),在主席树上求出来 ...

  4. 5255 -- 【FJOI2016】神秘数

    5255 -- [FJOI2016]神秘数 Description 一个可重复数字集合\(S\) 的神秘数定义为最小的不能被 \(S\) 的子集的和表示的正整数.例如: \(S = {1,1,1,4, ...

  5. LibreOJ2095 - 「CQOI2015」选数

    Portal Description 给出\(n,k,L,R(\leq10^9)\),求从\([L,R]\)中选出\(n\)个可相同有顺序的数使得其gcd为\(k\)的方案数. Solution 记\ ...

  6. 「CQOI2015」选数

    「CQOI2015」选数 题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都 ...

  7. 【LOJ】#3094. 「BJOI2019」删数

    LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以 ...

  8. 「BZOJ3505」[CQOI2014] 数三角形

    「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...

  9. [BZOJ4408&&BZOJ4299][FJOI2016 && Codechef]神秘数&&FRBSUM(主席树)

    4299: Codechef FRBSUM Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 550  Solved: 351[Submit][Statu ...

随机推荐

  1. 微信小程序又一爆炸功能上线-云开发

    云开发介绍 开发者可以使用云开发开发微信小程序.小游戏,无需搭建服务器,即可使用云端能力. 云开发为开发者提供完整的云端支持,弱化后端和运维概念,无需搭建服务器,使用平台提供的 API 进行核心业务开 ...

  2. js01

    /////////////////////////////////////////////////////////////js开端/////////////////////////////////// ...

  3. Vim插件推荐

    看下文时要知道我的<leader>键就是\. ctags C程序阅读辅助工具.在看C/C++代码的时候经常需要在文件之间跳来跳去,这是很麻烦的事,ctags就是解决这种问题的.ctags是 ...

  4. vm中efi模式安装windows10

    选择dvd: 界面出现“Press any key to boot from CD or DVD”时,再迅速按下任意键就OK了.

  5. Codeforces Round #347 (Div.2)_A. Complicated GCD

    题目链接:http://codeforces.com/contest/664/problem/A A. Complicated GCD time limit per test 1 second mem ...

  6. 【转】WebSocket 是什么原理?为什么可以实现持久连接?

    WebSocket是HTML5出的东西 也就是说HTTP协议没有变化 但HTTP是不支持持久连接的(长连接,循环连接的不算)或者说WebSocket干脆就不是基于HTTP来执行的.但是...说不通啊. ...

  7. python 最简单的web应用(一)

    对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端. server.py文件 #!/usr/bin/env python # -*- coding: ...

  8. ORB-SLAM使用方法

    preparation:按照官網步驟完成ORB的安裝. 1.修改Camera calibration參數:到~/ORB_SLAM/Data/Settings.yaml修改 2.開啟終端機    -&g ...

  9. jquery 添加和删除节点

    // 增加一个三和一节点 function addPanel() { // var newPanel = $('.my-panel').clone(true) var newPanel = $(&qu ...

  10. 2、SpringBoot+MybatisPlus整合-------BaseCRUD

    开发工具:STS 代码下载链接:GitHub管理代码 版本: Springboot:1.5.14.RELEASE 使用2.0以上的Springboot,会报出一些异常.欢迎知道异常原因的大牛解惑. M ...