2142: 礼物

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 2286  Solved: 1009
[Submit][Status][Discuss]

Description

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E
心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人
,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某
个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

Input

输入的第一行包含一个正整数P,表示模;
第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;
以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

Output

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

Sample Input

100
4 2
1
2

Sample Output

12
【样例说明】
下面是对样例1的说明。
以“/”分割,“/”前后分别表示送给第一个人和第二个人的礼物编号。12种方案详情如下:
1/23 1/24 1/34
2/13 2/14 2/34
3/12 3/14 3/24
4/12 4/13 4/23
【数据规模和约定】
设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数。
对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。

HINT

 

Source

 

[Submit][Status][Discuss]

数论大集合。

https://blog.csdn.net/clove_unique/article/details/54571216

答案显然$C_n^{n - w[1]}C_{n - w[1]}^{w[2]}C_{n - w[1] - w[2]}^{w[3]}......$,模数不互质成为难点。

扩展Lucas:将模数质因数分解,再用CRT合并。

问题就只剩下求$n!\%p_i^{k_i}$了。

首先由于不互质无法找到逆元,把$n!$中的$p_i$全部取出来:$ans=\lfloor\frac{n}{p}\rfloor+\lfloor\frac{n}{p^2} \rfloor+\lfloor\frac{n}{p^3}\rfloor+...$

然后考虑剩下部分怎么做,用$F(n,p_i,p_i^{k_i})$表示答案,$f(n,p_i,p_i^{k_i})$表示$\prod_{j=1,j\perp p_i}^{n}j(mod\ p_i^{k_i})$,则:

$F(n,p_i,p_i^{k_i})=\lfloor\frac{n}{p_i}\rfloor!\times p_i^{\lfloor\frac{n}{p_i}\rfloor}\times f(p_i^{k_i},p_i,p_i^{k_i})^{\lfloor\frac{n}{p_i^{k_i}}\rfloor}\times f(n\%p_i^{k_i})\%p_i^{k_i}$

递归处理即可,要用到exgcd。

复杂度好像是,$O(\sqrt{P}+m\log_{2}^{2}p_i^{k_i}\log{p_i})$不过肯定跑不满。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
ll mod,n,m,w[],ans,x,y,Mod[N],st[N],r[N],num; ll ksm(ll a,ll b,ll p){
ll res;
for (res=; b; a=a*a%p,b>>=)
if (b&) res=res*a%p;
return res;
} ll exgcd(ll a,ll b,ll &x,ll &y){
ll d=a;
if (b) d=exgcd(b,a%b,y,x),y-=a/b*x; else x=,y=;
return d;
} ll inv(ll t,ll p){ ll x,y; exgcd(t,p,x,y); return (x+p)%p; } ll F(ll n,ll pi,ll pk){
if (!n) return ;
ll ans=;
rep(i,,pk) if (i%pi) ans=ans*i%pk;
ans=ksm(ans,n/pk,pk);
rep(i,,n%pk) if (i%pi) ans=ans*i%pk;
return ans*F(n/pi,pi,pk)%pk;
} ll exlucas(ll n,ll m,ll pi,ll pk){
if (m>n) return ;
ll a=F(n,pi,pk),b=F(m,pi,pk),c=F(n-m,pi,pk);
ll k=;
for (ll i=n; i; i/=pi) k+=i/pi;
for (ll i=m; i; i/=pi) k-=i/pi;
for (ll i=n-m; i; i/=pi) k-=i/pi;
return a*inv(b,pk)%pk*inv(c,pk)%pk*ksm(pi,k,pk)%pk;
} ll CRT(ll n,ll r[],ll m[]){
ll M=,res=,w;
rep(i,,n) M*=m[i];
rep(i,,n) w=M/m[i],res=(res+w*inv(w,m[i])*r[i])%M;
return (res+M)%M;
} ll par(ll n,ll m[],ll st[]){
ll num=;
for (ll i=; i*i<=n; i++) if (n%i==){
ll pk=;
while (n%i==) pk*=i,n/=i;
m[++num]=pk; st[num]=i;
}
if (n>) m[++num]=n,st[num]=n;
return num;
} ll excomb(ll n,ll m){
rep(i,,num) r[i]=exlucas(n,m,st[i],Mod[i]);
return CRT(num,r,Mod);
} int main(){
freopen("bzoj2142.in","r",stdin);
freopen("bzoj2142.out","w",stdout);
scanf("%lld\n",&mod); scanf("%lld%lld",&n,&m);
ll sum=; rep(i,,m) scanf("%lld",&w[i]),sum+=w[i];
if (n<sum){ puts("Impossible"); return ; }
num=par(mod,Mod,st); ans=;
rep(i,,m) n-=w[i-],ans=ans*excomb(n,w[i])%mod;
printf("%lld\n",ans);
return ;
}

[BZOJ2142]礼物(扩展Lucas)的更多相关文章

  1. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  2. BZOJ2142 礼物 扩展lucas 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html 题目传送门 - BZOJ2142 题意概括 小E购买了n件礼物,送给m个人,送给第i个人礼 ...

  3. BZOJ.2142.礼物(扩展Lucas)

    题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...

  4. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  5. bzoj 2142 礼物——扩展lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...

  6. BZOJ2142礼物——扩展卢卡斯

    题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...

  7. bzoj2142 礼物——扩展卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...

  8. BZOJ2142 礼物 【扩展Lucas】

    题目 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物, ...

  9. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

随机推荐

  1. UTXO是什么?

    以易于理解的方式解释了比特币交易中的"UTXO" UTXO 2017年11月1日 让我们看看当你发一点硬币时会发生什么. 比特币交易通过UTXO执行.通过在比特硬币的所有交易中新生 ...

  2. java web登录界面 源代码

    大概流程: 在java web项目中 导入sqljdbc4的包 在java Resources中完成java代码 在webContent 下建立一个存放自己写jsp的文件夹 将sqljdbc4和jst ...

  3. Client does not support authentication protocol requested by server

    关于由于版本号码不同而引起的 Client does not support authentication protocol requested by server 问题 搜索类似的问题,得到的答案类 ...

  4. 第1张 Maven简介 学习笔记

    什么是构建? 编译.运行单元测试.生成文档.打包和部署 Maven的应用: 构建工具 依赖管理工具 通过坐标系统定位到每一个构建(artifact) 项目信息管理工具 Maven对于项目目录结构.测试 ...

  5. 【bzoj3809/bzoj3236】Gty的二逼妹子序列/[Ahoi2013]作业 莫队算法+分块

    原文地址:http://www.cnblogs.com/GXZlegend/p/6805252.html bzoj3809 题目描述 Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了 ...

  6. Android初学者必知会的编程规范

    在安卓学习中,我们首先需要掌握的就是Android编程的一些规范,只有掌握了这些规范,后面的深入学习才能开展.今天小编在一个Android培训网站上搜罗了一些,Android初学者不得不知的开发规范, ...

  7. Statement [倍增+线段树]

    题面 思路 首先,可以确定的是,本题因为每个点只有一条入边,所以整个图肯定是一个基环外向树森林 那么我们首先考虑树上的情况: 我们考虑一个真点,它会对它的子树里面的所有假点产生贡献 一个真点对一个假点 ...

  8. 洛谷 P4514 上帝造题的七分钟 解题报告

    P4514 上帝造题的七分钟 题目背景 裸体(裸题)就意味着身体(神题). 题目描述 "第一分钟,X说,要有矩阵,于是便有了一个里面写满了\(0\)的\(n \times m\)矩阵. 第二 ...

  9. latex公式测试

    https://katex.org/docs/supported.html 1.x_n $x_n$ 2 . \sum $\sum$ \sum_{i=1}^n $\sum_{i=1}^n $ 3.\bi ...

  10. SQL UNPIVOT和PIVOT

    /* table_source PIVOT( 聚合函数(value_column) FOR pivot_column IN(<column_list>) ) 完整语法: table_sou ...