考虑变换

$$\hat{A_x} = \sum_{i\ or\ x = x}{ A_i }$$

记 $S_{t}(A,x) = \sum_{c(i,t)\ or\ c(x,t)=c(x,t),\ i \le |A|}{A_i}$
则 $\hat{A} = S_{\lceil log_2n \rceil}$

初始情况下有 $S_0$ 被拆分为 $n$ 段, $S_0([A_i],i) = A_i$
考虑每次将相邻两段合并。

记 $B0 = S_t([A0,A1],x)$ 的前一半,记 $B1$ 为后一半。
则有
$$B0 = A0 \\ B1 = A0 + A1$$
从而考虑将序列长度补为 $2^t$,不停合并序列即可实现时间复杂度 $O(nt)$ 的变换方法,逆变换只需要按上述变换解方程即可。

考虑应用这个变换
试求$$C_x = \sum_{a\ or\ b = x} A_a B_b$$
考虑应用变换的性质
$$\hat{C_c} \\ = \sum{[x\ or\ c=c]C_x} \\ = \sum{[(a\ or\ b)\ or\ c = c]A_a B_b} \\= \sum{[(a\ or\ c = c)]A_a [(b\ or\ c = c)B_b ]} \\=\hat{A_c} \hat{B_c}$$

对于
$$C_x = \sum_{a\ and\ b = x}{A_a B_b}$$
我们考虑构造另外一种变换方法,$$[(a\ and\ b)\ and\ c = c] = [(a\ and\ c = c)][(b\ and\ c = c)]$$
新的变换方法同上,为$$B0 = A0 + A1 \\ B1 = A1$$
上述变换很容易推广到高维的情况,略。

那么考虑另外一种逻辑规则$$C_x = \sum_{a \oplus b = x} A_a B_b$$
类比上述两式我们应用本身的运算 $xor$,再考虑将其化为只含有0,1的逻辑函数。
尝试定义 $f(a,b) = a \oplus b$ 中一的个数取余2,从而有
$$([f(a,c)=0]-[f(a,c)=1])([f(b,c)=0] - [f(b,c)=1]) \\= [f(a \oplus b,c) = 0] - [f(a \oplus b,c) = 1]$$
我们将变换称为 $w$ 变换
从而 $w(C) = w(A)\cdot w(B)$
考虑如何求解 $w(A)$
假定,记$$B0 = B00 - B10 \\ B1 = B01 - B11$$
从而
$$B00 = A00 + A11, B01 = A10 + A01 \\ B10 = A10 + A01, B11 = A00 + A11 \\ B0 = A00+A11-A10-A01 \\ B1 = A10+A01-A00-A11$$
从而$$B0 = A0 - A1, B1 = A1 - A0$$
正确但是无法通过反解的方式进行逆变换。
可以发现关键问题在于我们要设法使得$B0, B1$的生成式不能线性相关,从而不可以使得$$f(a,b) = g(a \oplus b)$$
因为前者会导致两个递归式线性相关。
而使得$$f(a,b) = g(a\ or\ b) / g(a\ and\ b)$$
则可以得到两个并不线性相关的式子。
考虑修改 $f(a,b)$ 定义,经尝试得到$f(a,b) = a\ and\ b$ 中 1 的个数满足$$f(a\oplus b,c) = f(a,c) \oplus f(b,c)$$契合上述式子
这样我们会得到变换$$B0 = A0+A1 \\ B1 = A0-A1$$
从而逆变换为$$A0 = \frac{B0+B1}{2} \\ A1 = \frac{B0-B1}{2}$$
考虑和$fft$一样,统一正反变换,得到
$$B0 = \frac{A0+A1}{\sqrt 2} \\ B1 = \frac{A0-A1}{\sqrt 2}$$
反向变换相同。
我们考虑将原序列中各个元素对于变换后序列每一项的贡献,用矩阵写出来得到$Hadamard$ 矩阵。
$$H_n = \frac{1}{\sqrt 2}\left( \begin{array}{ccc} H{n-1} & H{n-1} \\ H{n-1} & -H{n-1} \end{array} \right)$$

后两个变换的简单测试程序:

#include <bits/stdc++.h>
using namespace std;
void W(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
W(a,l,m);
W(a,m+,r);
for(int i=l;i<=m;i++)
{
a[i]-=a[i-l++m];
a[i-l++m] = -a[i];
}
}
void FWT(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
FWT(a,l,m);
FWT(a,m+,r);
for(int i=l;i<=m;i++)
{
int x = a[i], y = a[i-l++m];
a[i] = x+y;
a[i-l++m] = x-y;
}
}
void rFWT(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
for(int i=l;i<=m;i++)
{
int x = a[i], y = a[i-l++m];
a[i] = (x+y)/;
a[i-l++m] = (x-y)/;
}
rFWT(a,l,m);
rFWT(a,m+,r);
}
int sol(int now)
{
int ans = ;
for(;now;now>>=) if(now&) ans=-ans;
return ans;
}
#define N 100010
int a[N],s[N];
int main()
{
int t;
cin >> t;
for(int i=;i<(<<t);i++) scanf("%d",&a[i]);
for(int i=;i<(<<t);i++)
{
s[i] = ;
for(int j=;j<(<<t);j++) s[i] += sol(i^j)*a[j];
}
W(a,,(<<t)-);
for(int i=;i<(<<t);i++) cout << s[i] - a[i] << endl;
return ;
}

Fast Walsh–Hadamard transform的更多相关文章

  1. h.264 fast,1/2,1/4像素运动估计与插值处理

    Hadamard Transform 在1/2,1/4像素运动估计这一阶段中,对于像素残差,可以选择采用哈达玛变换来代替离散余弦变换进行高低频的分离. 优点:哈达玛矩阵全是+1,-1,因此只需要进行加 ...

  2. H.264 Transform

    变换是视频.图像编码的核心部分.目前所采用的变换算法都是从傅里叶变换演变而来.单纯的变换并不会导致视频(图像)的码率变小,反而会增大.但是非常巧妙的一点是:变换把图像从空域转换成的时域,把由色块组成的 ...

  3. 简单的量子算法(一):Hadamard 变换、Parity Problem

    Hadamard Transform Hadamard 变换在量子逻辑门中提过,只不过那时是单量子的Hadamard门,负责把\(|1\rangle\)变成\(|-\rangle\),\(|0\ran ...

  4. paper 132:图像去噪算法:NL-Means和BM3D

    这篇文章写的非常好,确定要~认真~慎重~的转载了,具体请关注本文编辑作者:http://wenhuix.github.io/research/denoise.html   我不会告诉你这里的代码都是f ...

  5. 图像去噪算法:NL-Means和BM3D

    图像去噪是非常基础也是非常必要的研究,去噪常常在更高级的图像处理之前进行,是图像处理的基础.可惜的是,目前去噪算法并没有很好的解决方案,实际应用中,更多的是在效果和运算复杂度之间求得一个平衡,再一次验 ...

  6. X264参考手册

    艺搜简介 基本语法: x264 [options]-o outfile infile 注意与ffmpeg的输入输出文件位置恰好相反: ffmpeg[options][[infile options]- ...

  7. Video processing systems and methods

    BACKGROUND The present invention relates to video processing systems. Advances in imaging technology ...

  8. FWT,FST入门

    0.目录 目录 0.目录 1.什么是 FWT 2. FWT 怎么做 2.1. 或卷积 2.2.与卷积 2.3.异或卷积 2.4.例题 3. FST 3.1. FST 怎么做 3.2.例题 1.什么是 ...

  9. [译]处理文本数据(scikit-learn 教程3)

    原文网址:http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html 翻译:Tacey Won ...

随机推荐

  1. 【LeetCode】:二叉搜索树

    相关概念: 一棵二叉搜索树(BST)是以一棵二叉树来组织的,可以用链表数据结构来表示,其中,每一个结点就是一个对象,一般地,包含数据内容key和指向孩子(也可能是父母)的指针属性.如果某个孩子结点不存 ...

  2. mutation与action

    mutation 作用: 更改state的状态 说明: 每个mutation对象都有字符串类型(type)与回调函数,在回调函数内进行状态修改,回调函数的第一个参数为state eg: mutatio ...

  3. NGINX中遇到SELinux 13:permission denied

    被selinux坑了.抓包发现端口始终没有流量, 操作过程中还特地dmesg看了c并没发现selinux的异常. https://www.nginx.com/blog/using-nginx-plus ...

  4. IntelliJ IDEA Sringboot 项目部署到外部Tomcat服务器

    <packaging>war</packaging> 添加依赖 <dependency> <groupId>org.springframework.bo ...

  5. 内存表 ClientDataSet CreateDataSet

    unit Form_Main; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, F ...

  6. C#winform拖拽实现获得文件路径

    1.关键知识点说明: 通过DragEnter事件获得被拖入窗口的“信息”(可以是若干文件,一些文字等等),在DragDrop事件中对“信息”进行解析.窗体的AllowDrop属性必须设置成true;且 ...

  7. Java集合类--->入门下篇

    HashSet集合 在上篇大概了解了什么是集合类,知道它可以存储任意类型的对象,并且比数组灵活,集合类的长度可以变化.这里将接着介绍一下,Set接口的实现类之一,HashSet集合,Set集合:元素不 ...

  8. 关于IDT报错乱码总结

    可算是把我折腾坏了.一筹莫展.最后才把这些问题搞好.有些事不知道做以前,怎么都想不到.发现了方法之后,原来也不过这样.我觉得自己记性太差.还是好好写下来吧.写下来顺便会帮我重新再梳理一遍.原先乱码是因 ...

  9. 简单使用c3p0连接池

    首先,c3p0是一个连接池插件 需要jar包: 使用手动配置: /** * 手动配置使用c3p0 * @throws PropertyVetoException * @throws SQLExcept ...

  10. HihoCoder 1636

    /** * 题目链接:https://cn.vjudge.net/problem/HihoCoder-1636 * 题目意思,石子合并,每次可以合并相邻的石子.每次可以x堆合并为一堆. * x属于[l ...