Fast Walsh–Hadamard transform
考虑变换
$$\hat{A_x} = \sum_{i\ or\ x = x}{ A_i }$$
记 $S_{t}(A,x) = \sum_{c(i,t)\ or\ c(x,t)=c(x,t),\ i \le |A|}{A_i}$
则 $\hat{A} = S_{\lceil log_2n \rceil}$
初始情况下有 $S_0$ 被拆分为 $n$ 段, $S_0([A_i],i) = A_i$
考虑每次将相邻两段合并。
记 $B0 = S_t([A0,A1],x)$ 的前一半,记 $B1$ 为后一半。
则有
$$B0 = A0 \\ B1 = A0 + A1$$
从而考虑将序列长度补为 $2^t$,不停合并序列即可实现时间复杂度 $O(nt)$ 的变换方法,逆变换只需要按上述变换解方程即可。
考虑应用这个变换
试求$$C_x = \sum_{a\ or\ b = x} A_a B_b$$
考虑应用变换的性质
$$\hat{C_c} \\ = \sum{[x\ or\ c=c]C_x} \\ = \sum{[(a\ or\ b)\ or\ c = c]A_a B_b} \\= \sum{[(a\ or\ c = c)]A_a [(b\ or\ c = c)B_b ]} \\=\hat{A_c} \hat{B_c}$$
对于
$$C_x = \sum_{a\ and\ b = x}{A_a B_b}$$
我们考虑构造另外一种变换方法,$$[(a\ and\ b)\ and\ c = c] = [(a\ and\ c = c)][(b\ and\ c = c)]$$
新的变换方法同上,为$$B0 = A0 + A1 \\ B1 = A1$$
上述变换很容易推广到高维的情况,略。
那么考虑另外一种逻辑规则$$C_x = \sum_{a \oplus b = x} A_a B_b$$
类比上述两式我们应用本身的运算 $xor$,再考虑将其化为只含有0,1的逻辑函数。
尝试定义 $f(a,b) = a \oplus b$ 中一的个数取余2,从而有
$$([f(a,c)=0]-[f(a,c)=1])([f(b,c)=0] - [f(b,c)=1]) \\= [f(a \oplus b,c) = 0] - [f(a \oplus b,c) = 1]$$
我们将变换称为 $w$ 变换
从而 $w(C) = w(A)\cdot w(B)$
考虑如何求解 $w(A)$
假定,记$$B0 = B00 - B10 \\ B1 = B01 - B11$$
从而
$$B00 = A00 + A11, B01 = A10 + A01 \\ B10 = A10 + A01, B11 = A00 + A11 \\ B0 = A00+A11-A10-A01 \\ B1 = A10+A01-A00-A11$$
从而$$B0 = A0 - A1, B1 = A1 - A0$$
正确但是无法通过反解的方式进行逆变换。
可以发现关键问题在于我们要设法使得$B0, B1$的生成式不能线性相关,从而不可以使得$$f(a,b) = g(a \oplus b)$$
因为前者会导致两个递归式线性相关。
而使得$$f(a,b) = g(a\ or\ b) / g(a\ and\ b)$$
则可以得到两个并不线性相关的式子。
考虑修改 $f(a,b)$ 定义,经尝试得到$f(a,b) = a\ and\ b$ 中 1 的个数满足$$f(a\oplus b,c) = f(a,c) \oplus f(b,c)$$契合上述式子
这样我们会得到变换$$B0 = A0+A1 \\ B1 = A0-A1$$
从而逆变换为$$A0 = \frac{B0+B1}{2} \\ A1 = \frac{B0-B1}{2}$$
考虑和$fft$一样,统一正反变换,得到
$$B0 = \frac{A0+A1}{\sqrt 2} \\ B1 = \frac{A0-A1}{\sqrt 2}$$
反向变换相同。
我们考虑将原序列中各个元素对于变换后序列每一项的贡献,用矩阵写出来得到$Hadamard$ 矩阵。
$$H_n = \frac{1}{\sqrt 2}\left( \begin{array}{ccc} H{n-1} & H{n-1} \\ H{n-1} & -H{n-1} \end{array} \right)$$
后两个变换的简单测试程序:
#include <bits/stdc++.h>
using namespace std;
void W(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
W(a,l,m);
W(a,m+,r);
for(int i=l;i<=m;i++)
{
a[i]-=a[i-l++m];
a[i-l++m] = -a[i];
}
}
void FWT(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
FWT(a,l,m);
FWT(a,m+,r);
for(int i=l;i<=m;i++)
{
int x = a[i], y = a[i-l++m];
a[i] = x+y;
a[i-l++m] = x-y;
}
}
void rFWT(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
for(int i=l;i<=m;i++)
{
int x = a[i], y = a[i-l++m];
a[i] = (x+y)/;
a[i-l++m] = (x-y)/;
}
rFWT(a,l,m);
rFWT(a,m+,r);
}
int sol(int now)
{
int ans = ;
for(;now;now>>=) if(now&) ans=-ans;
return ans;
}
#define N 100010
int a[N],s[N];
int main()
{
int t;
cin >> t;
for(int i=;i<(<<t);i++) scanf("%d",&a[i]);
for(int i=;i<(<<t);i++)
{
s[i] = ;
for(int j=;j<(<<t);j++) s[i] += sol(i^j)*a[j];
}
W(a,,(<<t)-);
for(int i=;i<(<<t);i++) cout << s[i] - a[i] << endl;
return ;
}
Fast Walsh–Hadamard transform的更多相关文章
- h.264 fast,1/2,1/4像素运动估计与插值处理
Hadamard Transform 在1/2,1/4像素运动估计这一阶段中,对于像素残差,可以选择采用哈达玛变换来代替离散余弦变换进行高低频的分离. 优点:哈达玛矩阵全是+1,-1,因此只需要进行加 ...
- H.264 Transform
变换是视频.图像编码的核心部分.目前所采用的变换算法都是从傅里叶变换演变而来.单纯的变换并不会导致视频(图像)的码率变小,反而会增大.但是非常巧妙的一点是:变换把图像从空域转换成的时域,把由色块组成的 ...
- 简单的量子算法(一):Hadamard 变换、Parity Problem
Hadamard Transform Hadamard 变换在量子逻辑门中提过,只不过那时是单量子的Hadamard门,负责把\(|1\rangle\)变成\(|-\rangle\),\(|0\ran ...
- paper 132:图像去噪算法:NL-Means和BM3D
这篇文章写的非常好,确定要~认真~慎重~的转载了,具体请关注本文编辑作者:http://wenhuix.github.io/research/denoise.html 我不会告诉你这里的代码都是f ...
- 图像去噪算法:NL-Means和BM3D
图像去噪是非常基础也是非常必要的研究,去噪常常在更高级的图像处理之前进行,是图像处理的基础.可惜的是,目前去噪算法并没有很好的解决方案,实际应用中,更多的是在效果和运算复杂度之间求得一个平衡,再一次验 ...
- X264参考手册
艺搜简介 基本语法: x264 [options]-o outfile infile 注意与ffmpeg的输入输出文件位置恰好相反: ffmpeg[options][[infile options]- ...
- Video processing systems and methods
BACKGROUND The present invention relates to video processing systems. Advances in imaging technology ...
- FWT,FST入门
0.目录 目录 0.目录 1.什么是 FWT 2. FWT 怎么做 2.1. 或卷积 2.2.与卷积 2.3.异或卷积 2.4.例题 3. FST 3.1. FST 怎么做 3.2.例题 1.什么是 ...
- [译]处理文本数据(scikit-learn 教程3)
原文网址:http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html 翻译:Tacey Won ...
随机推荐
- Java进阶学习:JSON解析利器JackSon
Java:JSON解析利器JackSon JackSon基础 1.Maven项目引入 <!-- https://mvnrepository.com/artifact/org.codehaus.j ...
- migrate
数据类型 引用 # :string, :text, :integer, :float,:decimal, :datetime, :timestamp, :time, :date, # :binary, ...
- js之Date(日期对象)
通过日期对象我们可以进行一些对日期时间的操作处理 一.日期对象的创建: var myDate=new Date() 二.Date对象方法: Link:http://www.w3school.com.c ...
- 20145229《Java程序设计》第四次实验报告
Android开发基础 实验要求 1.基于Android Studio开发简单的Android应用并部署测试; 2.了解Android组件.布局管理器的使用: 3.掌握Android中事件处理机制. ...
- android6.0 外部存储设备插拔广播以及获取路径(U盘)【转】
本文转载自:https://blog.csdn.net/zhouchengxi/article/details/53982222 这里我将U盘作为例子来说明解析. android4.1版本时U盘插拔时 ...
- 在Ubuntu上为Android系统的Application Frameworks层增加硬件访问服务【转】
本文转载自:http://blog.csdn.net/luoshengyang/article/details/6578352 在数字科技日新月异的今天,软件和硬件的完美结合,造就了智能移动设备的流行 ...
- tkinter比较常用的组件
1.输入框组件 输入框(Entry)用来输入单行内容,可以方便地向程序传递用户参数.这里通过一个转换摄氏度和华氏度的小程序来演示该组件的使用. import tkinter as tk def btn ...
- 纯css实现3D字体
下面分别是html,css和js代码: <div class="wrapper"> <h1 contenteditable data-heading=" ...
- python中的enumerate()函数用法
enumerate函数用于遍历序列中的元素以及它们的下标,可以非常方便的遍历元素. 比如我在往excel中写数据时就用到了这个函数: data = [] data.append(('预约码', '车牌 ...
- FEC之我见一
顾名思义,FEC前向纠错,根据收到的包进行计算获取丢掉的包,而和大神沟通的结果就是 纠错神髓:收到的媒体包+冗余包 >= 原始媒体包数据 直到满足 收到的媒体包+ 冗余包 >= 原始媒 ...