考虑变换

$$\hat{A_x} = \sum_{i\ or\ x = x}{ A_i }$$

记 $S_{t}(A,x) = \sum_{c(i,t)\ or\ c(x,t)=c(x,t),\ i \le |A|}{A_i}$
则 $\hat{A} = S_{\lceil log_2n \rceil}$

初始情况下有 $S_0$ 被拆分为 $n$ 段, $S_0([A_i],i) = A_i$
考虑每次将相邻两段合并。

记 $B0 = S_t([A0,A1],x)$ 的前一半,记 $B1$ 为后一半。
则有
$$B0 = A0 \\ B1 = A0 + A1$$
从而考虑将序列长度补为 $2^t$,不停合并序列即可实现时间复杂度 $O(nt)$ 的变换方法,逆变换只需要按上述变换解方程即可。

考虑应用这个变换
试求$$C_x = \sum_{a\ or\ b = x} A_a B_b$$
考虑应用变换的性质
$$\hat{C_c} \\ = \sum{[x\ or\ c=c]C_x} \\ = \sum{[(a\ or\ b)\ or\ c = c]A_a B_b} \\= \sum{[(a\ or\ c = c)]A_a [(b\ or\ c = c)B_b ]} \\=\hat{A_c} \hat{B_c}$$

对于
$$C_x = \sum_{a\ and\ b = x}{A_a B_b}$$
我们考虑构造另外一种变换方法,$$[(a\ and\ b)\ and\ c = c] = [(a\ and\ c = c)][(b\ and\ c = c)]$$
新的变换方法同上,为$$B0 = A0 + A1 \\ B1 = A1$$
上述变换很容易推广到高维的情况,略。

那么考虑另外一种逻辑规则$$C_x = \sum_{a \oplus b = x} A_a B_b$$
类比上述两式我们应用本身的运算 $xor$,再考虑将其化为只含有0,1的逻辑函数。
尝试定义 $f(a,b) = a \oplus b$ 中一的个数取余2,从而有
$$([f(a,c)=0]-[f(a,c)=1])([f(b,c)=0] - [f(b,c)=1]) \\= [f(a \oplus b,c) = 0] - [f(a \oplus b,c) = 1]$$
我们将变换称为 $w$ 变换
从而 $w(C) = w(A)\cdot w(B)$
考虑如何求解 $w(A)$
假定,记$$B0 = B00 - B10 \\ B1 = B01 - B11$$
从而
$$B00 = A00 + A11, B01 = A10 + A01 \\ B10 = A10 + A01, B11 = A00 + A11 \\ B0 = A00+A11-A10-A01 \\ B1 = A10+A01-A00-A11$$
从而$$B0 = A0 - A1, B1 = A1 - A0$$
正确但是无法通过反解的方式进行逆变换。
可以发现关键问题在于我们要设法使得$B0, B1$的生成式不能线性相关,从而不可以使得$$f(a,b) = g(a \oplus b)$$
因为前者会导致两个递归式线性相关。
而使得$$f(a,b) = g(a\ or\ b) / g(a\ and\ b)$$
则可以得到两个并不线性相关的式子。
考虑修改 $f(a,b)$ 定义,经尝试得到$f(a,b) = a\ and\ b$ 中 1 的个数满足$$f(a\oplus b,c) = f(a,c) \oplus f(b,c)$$契合上述式子
这样我们会得到变换$$B0 = A0+A1 \\ B1 = A0-A1$$
从而逆变换为$$A0 = \frac{B0+B1}{2} \\ A1 = \frac{B0-B1}{2}$$
考虑和$fft$一样,统一正反变换,得到
$$B0 = \frac{A0+A1}{\sqrt 2} \\ B1 = \frac{A0-A1}{\sqrt 2}$$
反向变换相同。
我们考虑将原序列中各个元素对于变换后序列每一项的贡献,用矩阵写出来得到$Hadamard$ 矩阵。
$$H_n = \frac{1}{\sqrt 2}\left( \begin{array}{ccc} H{n-1} & H{n-1} \\ H{n-1} & -H{n-1} \end{array} \right)$$

后两个变换的简单测试程序:

#include <bits/stdc++.h>
using namespace std;
void W(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
W(a,l,m);
W(a,m+,r);
for(int i=l;i<=m;i++)
{
a[i]-=a[i-l++m];
a[i-l++m] = -a[i];
}
}
void FWT(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
FWT(a,l,m);
FWT(a,m+,r);
for(int i=l;i<=m;i++)
{
int x = a[i], y = a[i-l++m];
a[i] = x+y;
a[i-l++m] = x-y;
}
}
void rFWT(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
for(int i=l;i<=m;i++)
{
int x = a[i], y = a[i-l++m];
a[i] = (x+y)/;
a[i-l++m] = (x-y)/;
}
rFWT(a,l,m);
rFWT(a,m+,r);
}
int sol(int now)
{
int ans = ;
for(;now;now>>=) if(now&) ans=-ans;
return ans;
}
#define N 100010
int a[N],s[N];
int main()
{
int t;
cin >> t;
for(int i=;i<(<<t);i++) scanf("%d",&a[i]);
for(int i=;i<(<<t);i++)
{
s[i] = ;
for(int j=;j<(<<t);j++) s[i] += sol(i^j)*a[j];
}
W(a,,(<<t)-);
for(int i=;i<(<<t);i++) cout << s[i] - a[i] << endl;
return ;
}

Fast Walsh–Hadamard transform的更多相关文章

  1. h.264 fast,1/2,1/4像素运动估计与插值处理

    Hadamard Transform 在1/2,1/4像素运动估计这一阶段中,对于像素残差,可以选择采用哈达玛变换来代替离散余弦变换进行高低频的分离. 优点:哈达玛矩阵全是+1,-1,因此只需要进行加 ...

  2. H.264 Transform

    变换是视频.图像编码的核心部分.目前所采用的变换算法都是从傅里叶变换演变而来.单纯的变换并不会导致视频(图像)的码率变小,反而会增大.但是非常巧妙的一点是:变换把图像从空域转换成的时域,把由色块组成的 ...

  3. 简单的量子算法(一):Hadamard 变换、Parity Problem

    Hadamard Transform Hadamard 变换在量子逻辑门中提过,只不过那时是单量子的Hadamard门,负责把\(|1\rangle\)变成\(|-\rangle\),\(|0\ran ...

  4. paper 132:图像去噪算法:NL-Means和BM3D

    这篇文章写的非常好,确定要~认真~慎重~的转载了,具体请关注本文编辑作者:http://wenhuix.github.io/research/denoise.html   我不会告诉你这里的代码都是f ...

  5. 图像去噪算法:NL-Means和BM3D

    图像去噪是非常基础也是非常必要的研究,去噪常常在更高级的图像处理之前进行,是图像处理的基础.可惜的是,目前去噪算法并没有很好的解决方案,实际应用中,更多的是在效果和运算复杂度之间求得一个平衡,再一次验 ...

  6. X264参考手册

    艺搜简介 基本语法: x264 [options]-o outfile infile 注意与ffmpeg的输入输出文件位置恰好相反: ffmpeg[options][[infile options]- ...

  7. Video processing systems and methods

    BACKGROUND The present invention relates to video processing systems. Advances in imaging technology ...

  8. FWT,FST入门

    0.目录 目录 0.目录 1.什么是 FWT 2. FWT 怎么做 2.1. 或卷积 2.2.与卷积 2.3.异或卷积 2.4.例题 3. FST 3.1. FST 怎么做 3.2.例题 1.什么是 ...

  9. [译]处理文本数据(scikit-learn 教程3)

    原文网址:http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html 翻译:Tacey Won ...

随机推荐

  1. 教你如何写一个 Yii2 扩展

    前言 把一系列相关联的功能使用模块开发,好处多多,维护起来很方便,模块还可以单独发布出去,让下一个项目之间使用,真是方便. 下面我就写一个开发扩展的简单教程. Gii gii 自带帮助我们生成一个基本 ...

  2. Swift URL encode

    前言 在WEB前端开发,服务器后台开发,或者是客户端开发中,对URL进行编码是一件很常见的事情,但是由于各个年代的RFC文档中的内容一直在变化,一些年代久远的代码就对URL编码和解码的规则和现在的有一 ...

  3. samsung n143 brightness on linux mint

    sudo vi /etc/default/grub Find the line which says GRUB_CMDLINE_LINUX="" enter acpi_backli ...

  4. 在数据库中使用数字ID作为主键的表生成主键方法

    在数据库开发中,很多时候建一个表的时候会使用一个数字类型来作为主键,使用自增长类型自然会更方便,只是本人从来不喜欢有内容不在自己掌控之中,况且自增长类型在进行数据库复制时会比较麻烦.所以本人一直使用自 ...

  5. WPF之基础概念

    一:App环境承载 我们都知道Console和WinForm程序的入口都是Main函数,WPF同样也不例外,好了,我们就新建一个WPF应用程序,VS会给我们自动生成一个MainWindow.xaml和 ...

  6. 自顶向下归并排序(Merge Sort)

    一.自顶向下的归并排序思路: 1.先把数组分为两个部分. 2.分别对这两个部分进行排序. 3.排序完之后,将这两个数组归并为一个有序的数组. 重复1-3步骤,直到数组的大小为1,则直接返回. 这个思路 ...

  7. matlab产生很多个相同的数字

    如产生100行1列的0.5: ones(100,1)*0.5:

  8. jQuery查找子元素与后代元素

    1. 子元素: $().children('选择器')  如选择type为file的子元素  $(this).children("input[type=file]") 或者 $(& ...

  9. Mysql远程链接访问权限设置

    Host 'XXX' is not allowed to connect to this MySQL server 解决方案/如何开启MySQL的远程帐号 如何开启MySQL的远程帐号-1)首先以 r ...

  10. 分享知识-快乐自己:java代码 操作 solr

    POM 文件: <!-- solr客户端 --> <dependency> <groupId>org.apache.solr</groupId> < ...