考虑变换

$$\hat{A_x} = \sum_{i\ or\ x = x}{ A_i }$$

记 $S_{t}(A,x) = \sum_{c(i,t)\ or\ c(x,t)=c(x,t),\ i \le |A|}{A_i}$
则 $\hat{A} = S_{\lceil log_2n \rceil}$

初始情况下有 $S_0$ 被拆分为 $n$ 段, $S_0([A_i],i) = A_i$
考虑每次将相邻两段合并。

记 $B0 = S_t([A0,A1],x)$ 的前一半,记 $B1$ 为后一半。
则有
$$B0 = A0 \\ B1 = A0 + A1$$
从而考虑将序列长度补为 $2^t$,不停合并序列即可实现时间复杂度 $O(nt)$ 的变换方法,逆变换只需要按上述变换解方程即可。

考虑应用这个变换
试求$$C_x = \sum_{a\ or\ b = x} A_a B_b$$
考虑应用变换的性质
$$\hat{C_c} \\ = \sum{[x\ or\ c=c]C_x} \\ = \sum{[(a\ or\ b)\ or\ c = c]A_a B_b} \\= \sum{[(a\ or\ c = c)]A_a [(b\ or\ c = c)B_b ]} \\=\hat{A_c} \hat{B_c}$$

对于
$$C_x = \sum_{a\ and\ b = x}{A_a B_b}$$
我们考虑构造另外一种变换方法,$$[(a\ and\ b)\ and\ c = c] = [(a\ and\ c = c)][(b\ and\ c = c)]$$
新的变换方法同上,为$$B0 = A0 + A1 \\ B1 = A1$$
上述变换很容易推广到高维的情况,略。

那么考虑另外一种逻辑规则$$C_x = \sum_{a \oplus b = x} A_a B_b$$
类比上述两式我们应用本身的运算 $xor$,再考虑将其化为只含有0,1的逻辑函数。
尝试定义 $f(a,b) = a \oplus b$ 中一的个数取余2,从而有
$$([f(a,c)=0]-[f(a,c)=1])([f(b,c)=0] - [f(b,c)=1]) \\= [f(a \oplus b,c) = 0] - [f(a \oplus b,c) = 1]$$
我们将变换称为 $w$ 变换
从而 $w(C) = w(A)\cdot w(B)$
考虑如何求解 $w(A)$
假定,记$$B0 = B00 - B10 \\ B1 = B01 - B11$$
从而
$$B00 = A00 + A11, B01 = A10 + A01 \\ B10 = A10 + A01, B11 = A00 + A11 \\ B0 = A00+A11-A10-A01 \\ B1 = A10+A01-A00-A11$$
从而$$B0 = A0 - A1, B1 = A1 - A0$$
正确但是无法通过反解的方式进行逆变换。
可以发现关键问题在于我们要设法使得$B0, B1$的生成式不能线性相关,从而不可以使得$$f(a,b) = g(a \oplus b)$$
因为前者会导致两个递归式线性相关。
而使得$$f(a,b) = g(a\ or\ b) / g(a\ and\ b)$$
则可以得到两个并不线性相关的式子。
考虑修改 $f(a,b)$ 定义,经尝试得到$f(a,b) = a\ and\ b$ 中 1 的个数满足$$f(a\oplus b,c) = f(a,c) \oplus f(b,c)$$契合上述式子
这样我们会得到变换$$B0 = A0+A1 \\ B1 = A0-A1$$
从而逆变换为$$A0 = \frac{B0+B1}{2} \\ A1 = \frac{B0-B1}{2}$$
考虑和$fft$一样,统一正反变换,得到
$$B0 = \frac{A0+A1}{\sqrt 2} \\ B1 = \frac{A0-A1}{\sqrt 2}$$
反向变换相同。
我们考虑将原序列中各个元素对于变换后序列每一项的贡献,用矩阵写出来得到$Hadamard$ 矩阵。
$$H_n = \frac{1}{\sqrt 2}\left( \begin{array}{ccc} H{n-1} & H{n-1} \\ H{n-1} & -H{n-1} \end{array} \right)$$

后两个变换的简单测试程序:

#include <bits/stdc++.h>
using namespace std;
void W(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
W(a,l,m);
W(a,m+,r);
for(int i=l;i<=m;i++)
{
a[i]-=a[i-l++m];
a[i-l++m] = -a[i];
}
}
void FWT(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
FWT(a,l,m);
FWT(a,m+,r);
for(int i=l;i<=m;i++)
{
int x = a[i], y = a[i-l++m];
a[i] = x+y;
a[i-l++m] = x-y;
}
}
void rFWT(int a[],int l,int r)
{
if(l==r) return;
int m = (l+r)>>;
for(int i=l;i<=m;i++)
{
int x = a[i], y = a[i-l++m];
a[i] = (x+y)/;
a[i-l++m] = (x-y)/;
}
rFWT(a,l,m);
rFWT(a,m+,r);
}
int sol(int now)
{
int ans = ;
for(;now;now>>=) if(now&) ans=-ans;
return ans;
}
#define N 100010
int a[N],s[N];
int main()
{
int t;
cin >> t;
for(int i=;i<(<<t);i++) scanf("%d",&a[i]);
for(int i=;i<(<<t);i++)
{
s[i] = ;
for(int j=;j<(<<t);j++) s[i] += sol(i^j)*a[j];
}
W(a,,(<<t)-);
for(int i=;i<(<<t);i++) cout << s[i] - a[i] << endl;
return ;
}

Fast Walsh–Hadamard transform的更多相关文章

  1. h.264 fast,1/2,1/4像素运动估计与插值处理

    Hadamard Transform 在1/2,1/4像素运动估计这一阶段中,对于像素残差,可以选择采用哈达玛变换来代替离散余弦变换进行高低频的分离. 优点:哈达玛矩阵全是+1,-1,因此只需要进行加 ...

  2. H.264 Transform

    变换是视频.图像编码的核心部分.目前所采用的变换算法都是从傅里叶变换演变而来.单纯的变换并不会导致视频(图像)的码率变小,反而会增大.但是非常巧妙的一点是:变换把图像从空域转换成的时域,把由色块组成的 ...

  3. 简单的量子算法(一):Hadamard 变换、Parity Problem

    Hadamard Transform Hadamard 变换在量子逻辑门中提过,只不过那时是单量子的Hadamard门,负责把\(|1\rangle\)变成\(|-\rangle\),\(|0\ran ...

  4. paper 132:图像去噪算法:NL-Means和BM3D

    这篇文章写的非常好,确定要~认真~慎重~的转载了,具体请关注本文编辑作者:http://wenhuix.github.io/research/denoise.html   我不会告诉你这里的代码都是f ...

  5. 图像去噪算法:NL-Means和BM3D

    图像去噪是非常基础也是非常必要的研究,去噪常常在更高级的图像处理之前进行,是图像处理的基础.可惜的是,目前去噪算法并没有很好的解决方案,实际应用中,更多的是在效果和运算复杂度之间求得一个平衡,再一次验 ...

  6. X264参考手册

    艺搜简介 基本语法: x264 [options]-o outfile infile 注意与ffmpeg的输入输出文件位置恰好相反: ffmpeg[options][[infile options]- ...

  7. Video processing systems and methods

    BACKGROUND The present invention relates to video processing systems. Advances in imaging technology ...

  8. FWT,FST入门

    0.目录 目录 0.目录 1.什么是 FWT 2. FWT 怎么做 2.1. 或卷积 2.2.与卷积 2.3.异或卷积 2.4.例题 3. FST 3.1. FST 怎么做 3.2.例题 1.什么是 ...

  9. [译]处理文本数据(scikit-learn 教程3)

    原文网址:http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html 翻译:Tacey Won ...

随机推荐

  1. LeetCode:用HashMap解决问题

    LeetCode:用HashMap解决问题 Find Anagram Mappings class Solution { public int[] anagramMappings(int[] A, i ...

  2. PAT 天梯赛 L2-005. 集合相似度 【SET】

    题目链接 https://www.patest.cn/contests/gplt/L2-005 思路 因为集合中的元素 是不重复的 所以用SET 来保存 集合 然后最后 查找一下 两个集合中共有元素 ...

  3. python中的id

    python对象都有三个特性分别是身份.类型.值,身份指该对象内存地址,内建函数id()可获得身份,类似于指针的地址,但不能控制这个值,类型决定对象可以保存什么类型的值,值是对象表示的数据项,pyth ...

  4. Docker 命令篇

    Docker命令比较对,我们来慢慢学 Docker run(运行Container) 常用选项: -d Run container in background and print container ...

  5. Excel 2007中自定义数字格式前要了解的准则

    要在Excel 2007中创建自定义数字格式,首先应了解自定义数字格式的准则,并从选择某一内置数字格式开始.然后,可以更改该格式的任意代码部分,从而创建自己的自定义数字格式. 数字格式最多可包含四个代 ...

  6. JSP嵌入ueditor、umeditor富文本编辑器

    一.下载: 1.什么是富文本编辑器?就是: 或者是这个: 其中第一个功能比较详尽,其主要用来编写文章,名字叫做udeitor. 第二个就相对精简,是第一个的MINI版,其主要用来编辑即时聊天或者发帖, ...

  7. NLP-最小编辑距离

    最小编辑距离 一 概念 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的编辑操作次数.最小编辑距离,是指所需最小的编辑操作次数. 编辑操 ...

  8. neutron VPC

    The goal of this document is to provide an umbrella blueprint defining how to add support for VPC in ...

  9. C#统计目录中文件MD5值

    1. [代码]统计目录中文件MD5值 using System.IO;using System.Security.Cryptography;using System.Collections;using ...

  10. js 处理移动端触摸事件

    在处理移动端的touch事件时,我们可以选择一些插件来处理,比如jquery ui touch punch.js 提供丰富的触摸效果,可以满足移动端的开发, 但是,有些移动端开发中,并不需要如此复杂的 ...