1.pickle模块简介

The pickle module implements binary protocols for serializing and de-serializing a Python object structure。

大意是说:pickle模块是用来实现二进制存储对于python对象结构的的序列化和反序列化。

2.使用前导入模块

import pickle

3.创造要序列化的数据结构

如列表:my_list = [123,3.14,'小甲鱼',['another list',20]]

4.创建一个二进制文件

pick_file = open('D:\\test\\my_list.pkl','wb')

5.使用pickle的函数dump装入文件

pickle.dump(my_list,pick_file)

6.关闭打开的文件完成写入

pick_file.close()

7.运行结果,由于写入的是二进制文件,那么用文本打开肯定是乱码的

8.以指读方式打开刚才存储的二进制文件

pickfile = open('D:\\test\\my_list.pkl','rb')

9.读取文件内容到列表,怎么写入的怎么读取

listfile = pickle.load(pickfile)

10.查看读取结果,我们写入的内容又被我们读取出来了

>>> print(listfile)
[123, 3.14, '小甲鱼', ['another list', 20]]

11.介绍文档

NAME
pickle - Create portable serialized representations of Python objects.

DESCRIPTION
See module copyreg for a mechanism for registering custom picklers.
See module pickletools source for extensive comments.

Classes:

Pickler
Unpickler

Functions:

dump(object, file)
dumps(object) -> string         
load(file) -> object
loads(string) -> object

Misc variables:

__version__
format_version
compatible_formats

FUNCTIONS
dump(obj, file, protocol=None, *, fix_imports=True)
Write a pickled representation of obj to the open file object file.

This is equivalent to ``Pickler(file, protocol).dump(obj)``, but may
be more efficient.

The optional *protocol* argument tells the pickler to use the given
protocol supported protocols are 0, 1, 2, 3 and 4. The default
protocol is 3; a backward-incompatible protocol designed for Python 3.

Specifying a negative protocol version selects the highest protocol
version supported. The higher the protocol used, the more recent the
version of Python needed to read the pickle produced.

The *file* argument must have a write() method that accepts a single
bytes argument. It can thus be a file object opened for binary
writing, an io.BytesIO instance, or any other custom object that meets
this interface.

If *fix_imports* is True and protocol is less than 3, pickle will try
to map the new Python 3 names to the old module names used in Python
2, so that the pickle data stream is readable with Python 2.

dumps(obj, protocol=None, *, fix_imports=True)
Return the pickled representation of the object as a bytes object.

The optional *protocol* argument tells the pickler to use the given
protocol; supported protocols are 0, 1, 2, 3 and 4. The default
protocol is 3; a backward-incompatible protocol designed for Python 3.

Specifying a negative protocol version selects the highest protocol
version supported. The higher the protocol used, the more recent the
version of Python needed to read the pickle produced.

If *fix_imports* is True and *protocol* is less than 3, pickle will
try to map the new Python 3 names to the old module names used in
Python 2, so that the pickle data stream is readable with Python 2.

load(file, *, fix_imports=True, encoding='ASCII', errors='strict')
Read and return an object from the pickle data stored in a file.

This is equivalent to ``Unpickler(file).load()``, but may be more
efficient.

The protocol version of the pickle is detected automatically, so no
protocol argument is needed. Bytes past the pickled object's
representation are ignored.

The argument *file* must have two methods, a read() method that takes
an integer argument, and a readline() method that requires no
arguments. Both methods should return bytes. Thus *file* can be a
binary file object opened for reading, an io.BytesIO object, or any
other custom object that meets this interface.

Optional keyword arguments are *fix_imports*, *encoding* and *errors*,
which are used to control compatibility support for pickle stream
generated by Python 2. If *fix_imports* is True, pickle will try to
map the old Python 2 names to the new names used in Python 3. The
*encoding* and *errors* tell pickle how to decode 8-bit string
instances pickled by Python 2; these default to 'ASCII' and 'strict',
respectively. The *encoding* can be 'bytes' to read these 8-bit
string instances as bytes objects.

loads(data, *, fix_imports=True, encoding='ASCII', errors='strict')
Read and return an object from the given pickle data.

The protocol version of the pickle is detected automatically, so no
protocol argument is needed. Bytes past the pickled object's
representation are ignored.

Optional keyword arguments are *fix_imports*, *encoding* and *errors*,
which are used to control compatibility support for pickle stream
generated by Python 2. If *fix_imports* is True, pickle will try to
map the old Python 2 names to the new names used in Python 3. The
*encoding* and *errors* tell pickle how to decode 8-bit string
instances pickled by Python 2; these default to 'ASCII' and 'strict',
respectively. The *encoding* can be 'bytes' to read these 8-bit
string instances as bytes objects.

Python模块之pickle(列表,字典等复杂数据类型与二进制文件的转化)的更多相关文章

  1. python模块之pickle、shelve、json

    一 什么是序列化 序列化指的是将内存中的数据结构转化为一种中间格式,并存储到硬盘上. (反序列化:将硬盘上存储的中间格式数据再还原为内存中的数据结构) 二 为什么要序列化 持久保持状态 需知一个软件/ ...

  2. python模块--json \ pickle \ shelve \ XML模块

    一.json模块 之前学习过的eval内置方法可以将一个字符串转成一个python对象,不过eval方法时有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,e ...

  3. python中用json存储列表字典等文件操作

    JSON字符串用json.dumps, json.loads JSON文件名用json.dump, json.load 由于需要在脚本重启后依旧能够记住之前所使用的列表内容, 故采用json存储列表文 ...

  4. python学习笔记(三)-列表&字典

    列表: 一.列表操作"""Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素.比如,列出班里所有同学的名字,就可以用一 ...

  5. python 模块之-pickle

    Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关 ...

  6. python模块:pickle

    """Create portable serialized representations of Python objects. See module copyreg f ...

  7. Python字符串/元祖/列表/字典互转

    #-*- coding:UTF-8 -*- #author:RXS002 #1.字典 dict = {'name':'Zara','age':7,'class':'First'} #字典转换为字符串, ...

  8. python中的字符串 列表 字典

    字符串     一个有序的字符集合  不可变 1,可以使用for in语句进行迭代循环,返回元素    2,in类是于str.find()方法但是是返回布尔结果        str.find()返回 ...

  9. python模块之pickle

    和json不同的是: json只支持str,int,tuple,list,dict. pickle支持python里所有的数据类型,但是只能在python里序列化,不跨平台,python独有. 代码示 ...

随机推荐

  1. SpringMVC 上传下载 异常处理

    SpringMVC 上传下载 异常处理 上一章节对SpringMVC的表单验证进行了详细的介绍,本章节介绍SpringMVC文件的上传和下载(重点),国际化以及异常处理问题.这也是SpringMVC系 ...

  2. Ani动态光标格式解析

    数据结构: Ani文件中的数据是按区段存放的,区段数据结构如下: 标识符(4字节ASCII),数据长度(一个DWORD),数据 按照此规则来看Ani文件,文件起始12字节可以理解为标准文件头,除数据长 ...

  3. SQL Server 结构分解

    关系引擎和存储引擎是SQL Server 的两大组件,其中关系引擎也叫查询处理器,它包括查询优化器.命令解析器.查询执行器.存储引擎管理所有的数据及涉及的IO,它包括事务管理器和数据访问方法和缓冲区管 ...

  4. 谷歌浏览器 插件安装配置Momentum chrome

    总之一句话就是这个Momentum插件可以把你的谷歌弄的漂亮一些,来搞一波 下载地址 http://www.cnplugins.com/down/predownnew.aspx?id=33842 下载 ...

  5. 常用的redis命令

      常用的redis命令 http://www.runoob.com/redis/redis-tutorial.html 菜鸟教程   Cmd连接有密码的redis:$ redis-cli -h ho ...

  6. c语言的枚举(遍历枚举)与数据类型总结

    一.枚举的概念 枚举是C语言中的一种基本数据类型,并不是构造类型,它可以用于声明一组常数.当一个变量有几个固定的可能取值时,可以将这个变量定义为枚举类型. 比如,你可以用一个枚举类型的变量来表示季节, ...

  7. PHP防止SQL注入和XSS攻击

    PHP防止SQL注入和XSS攻击PHP防范SQL注入是一个非常重要的安全手段.一个优秀的PHP程序员除了要能顺利的编写代码,还需要具备使程序处于安全环境下的能力.说到网站安全,就不得不提到SQL注入( ...

  8. 基于Node的高性能MVC框架

    赶上公司去Windows化,有一大波.net站点需要转成Node.js,于是自己就顺便琢磨一个通用的Node版MVC框架. 经过几天的努力,beta版终于面世了!因为其高性能的特点,特地命名node- ...

  9. Linux中nginx手动安装

    本分类下有一个环境一键安装.那这背后发生了什么呢?咱们手动使用源码进行安装. 1.首先保证有一个能联网的centos. 2.百度 ningx 官网   点download  http://nginx. ...

  10. 十招让Ubuntu 16.04用起来更得心应手(转)

    ubuntu 16.04是一种长期支持版本(LTS),是Canonical承诺发布五年的更新版.也就是说,你可以让这个版本在电脑上运行五年! 这样一来,一开始就设置好显得特别重要.你应该确保你的软件是 ...