bzoj4827 [Hnoi2017]礼物
Description
Input
Output
Sample Input
1 2 3 4 5
6 3 3 4 5
Sample Output
1
【样例解释】
需要将第一个手环的亮度增加1,第一个手环的亮度变为: 2 3 4 5 6 旋转一下第二个手环。对于该样例,是将第二个手环的亮度6 3 3 4 5向左循环移动 2017-04-15 第 6 页,共 6 页 一个位置,使得第二手环的最终的亮度为:3 3 4 5 6。 此时两个手环的亮度差异值为1。
正解:$FFT$。
考场上切了这题,还是很高兴的。。
首先我们可以发现,一个手环最多$+m$,我们只要分别枚举每个手环加多少就行了。
我们只考虑$x$手环加数,因为$y$手环与$x$手环其实是一样的。
枚举$m$,那么$Ans=\sum_{i=1}^{n}(x_{i}+m-y_{i})^{2}$。我们把它拆开以后可以发现,$Ans=\sum_{i=1}^{n}(x_{i}+m)^{2}+y_{i}^{2}-2*y_{i}*x_{i}-2*y_{i}*m$。
容易发现,$2*x_{i}*y_{i}$是复杂度的瓶颈。其实这一项可以很容易看出是一个卷积,我们把另一个数组翻转一下,就能发现$\sum_{i=1}^{n}x_{i}*y_{i}$是一个卷积的形式,然后直接上$FFT$就能过了。
其实这题还有复杂度更优的$O(nlogn+n)$的做法,似乎是用二次函数的最值??不过$O(nlogn+nm)$也能过。。
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <set>
#define inf (2147483647)
#define N (100010)
#define il inline
#define RG register
#define ll long long
#define C complex <long double> using namespace std; const long double pi=acos(-1.0); int a[N],b[N],n,m; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} namespace brute{ int ans,res1,res2; il void work(){
ans=inf;
for (RG int i=;i<=n;++i) a[i]=gi(),a[n+i]=a[i],res1+=a[i]*a[i];
for (RG int i=;i<=n;++i) b[i]=gi(),b[n+i]=b[i],res2+=b[i]*b[i];
for (RG int k=;k<=m;++k){
for (RG int i=;i<=n;++i) a[i]+=k;
for (RG int i=;i<=n;++i){
RG int res=;
for (RG int j=;j<=n;++j) res+=(a[j]-b[i+j-])*(a[j]-b[i+j-]);
ans=min(ans,res);
}
for (RG int i=;i<=n;++i) a[i]-=k;
}
for (RG int k=;k<=m;++k){
for (RG int i=;i<=n;++i) b[i]+=k;
for (RG int i=;i<=n;++i){
RG int res=;
for (RG int j=;j<=n;++j) res+=(b[j]-a[i+j-])*(b[j]-a[i+j-]);
ans=min(ans,res);
}
for (RG int i=;i<=n;++i) b[i]-=k;
}
printf("%d\n",ans); return;
} } namespace cheat{ C A[*N],B[*N];
int rev[*N],NN,lg;
ll r1[N],r2[N],res1,res2,tot1,tot2,ans; il void fft(C *a,RG int n,RG int f){
for (RG int i=;i<n;++i) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (RG int i=;i<n;i<<=){
C wn(cos(pi/i),sin(f*pi/i)),x,y;
for (RG int j=;j<n;j+=(i<<)){
C w(,);
for (RG int k=;k<i;++k,w*=wn){
x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y;
}
}
}
return;
} il void work(){
for (RG int i=;i<=n;++i){
a[i]=gi(),A[i]=a[i];
res1+=a[i]*a[i],tot1+=a[i];
}
for (RG int i=;i<=n;++i){
b[i]=gi(),B[n-i+]=b[i];
res2+=b[i]*b[i],tot2+=b[i];
}
for (NN=;NN<=(n<<);NN<<=) lg++; ans=1LL<<;
for (RG int i=;i<NN;++i) rev[i]=rev[i>>]>>|((i&)<<(lg-));
fft(A,NN,),fft(B,NN,);
for (RG int i=;i<NN;++i) A[i]*=B[i]; fft(A,NN,-);
for (RG int i=n+;i<=(n<<);++i){
r1[i-n]=(ll)(A[i].real()/NN+0.5);
r1[i-n]+=(ll)(A[i-n].real()/NN+0.5);
}
memset(A,,sizeof(A)),memset(B,,sizeof(B));
for (RG int i=;i<=n;++i) A[n-i+]=a[i],B[i]=b[i];
fft(A,NN,),fft(B,NN,);
for (RG int i=;i<NN;++i) B[i]*=A[i]; fft(B,NN,-);
for (RG int i=n+;i<=(n<<);++i){
r2[i-n]=(ll)(B[i].real()/NN+0.5);
r2[i-n]+=(ll)(B[i-n].real()/NN+0.5);
}
for (RG ll k=;k<=m;++k){
RG ll cnt=res2;
for (RG int i=;i<=n;++i) cnt+=(a[i]+k)*(a[i]+k);
for (RG int i=;i<=n;++i) ans=min(ans,cnt-*(r1[i]+tot2*k));
}
for (RG ll k=;k<=m;++k){
RG ll cnt=res1;
for (RG int i=;i<=n;++i) cnt+=(b[i]+k)*(b[i]+k);
for (RG int i=;i<=n;++i) ans=min(ans,cnt-*(r2[i]+tot1*k));
}
printf("%lld\n",ans); return;
} } il void work(){
n=gi(),m=gi();
if (n<= && m<=){ brute::work(); return; }
cheat::work(); return;
} int main(){
freopen("gift.in","r",stdin);
freopen("gift.out","w",stdout);
work();
return ;
}
bzoj4827 [Hnoi2017]礼物的更多相关文章
- [bzoj4827][Hnoi2017]礼物_FFT
礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我 ...
- [BZOJ4827][Hnoi2017]礼物(FFT)
4827: [Hnoi2017]礼物 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1315 Solved: 915[Submit][Status] ...
- BZOJ4827 [Hnoi2017]礼物 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8823962.html 题目传送门 - BZOJ4827 题意 有两个长为$n$的序列$x$和$y$,序列$x,y ...
- bzoj千题计划303:bzoj4827: [Hnoi2017]礼物
https://www.lydsy.com/JudgeOnline/problem.php?id=4827 式子化简一下,发现最后只跟 Σ xi*yi 有关 第二个序列反转,就可以用FFT优化 注意: ...
- 2018.11.16 bzoj4827: [Hnoi2017]礼物(ntt)
传送门 nttnttntt 入门题. 考虑展开要求的式子∑i=0n−1(xi−yi−c)2\sum_{i=0}^{n-1}(x_i-y_i-c)^2∑i=0n−1(xi−yi−c)2 => ...
- BZOJ4827: [Hnoi2017]礼物(FFT 二次函数)
题意 题目链接 Sol 越来越菜了..裸的FFT写了1h.. 思路比较简单,直接把 \(\sum (x_i - y_i + c)^2\) 拆开 发现能提出一坨东西,然后与c有关的部分是关于C的二次函数 ...
- BZOJ4827:[HNOI2017]礼物(FFT)
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- 【BZOJ4827】 [Hnoi2017]礼物
BZOJ4827 [Hnoi2017]礼物 Solution 如果一串数的增加,不就等于另一串数减吗? 那么我们可以把答案写成另一个形式: \(ans=\sum_{i=1}^n(x_i-y_i+C)^ ...
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
随机推荐
- conky 1.10以后的新配置格式
包装 config conky.config = { ... } 包装 TEXT conky.text = [[ ... ]] 每个 config 选项的变量和取值之间插入 "=" ...
- Linux命令语句秘籍
系统管理命令 stat 显示指定文件的详细信息,比ls更详细 who 显示在线登陆用户 whoami 显示当前操作用户 host ...
- X64系统下IIS运行ASP网站HTTP500错误 【安装FoxMail Server时出现】
错误如上 解决办法 使用管理员模式运行CMD 输入cscript C:\inetpub\adminscripts\adsutil.vbs SET W3SVC/AppPools/Enable32bitA ...
- Web服务器磁盘满故障深入解析
问题:硬盘显示被写满,但是用du -sh /*查看时占用硬盘空间之和还远小于硬盘大小即找不到硬盘分区是怎么被写满的. 今天下午接到一学生紧急求助,说生产线服务器硬盘满了.该删的日志都删掉了.可空间还是 ...
- QT Creator 快速入门教程 读书笔记(三)
一 信号和槽 GUI 程序除了要绘制控件,还要响应系统和用户事件,例如重绘.绘制完成.点击鼠标.敲击键盘等.当事件发生时,UI 会产生相应的变化,让用户直观地看到. 大部分编程(例如Win SDK ...
- Appium 解决锁屏截屏问题(java篇)
今天有个小伙伴问我,怎么把锁屏进行解锁操作? A.思路在初始化driver后,加入等待判断是否有锁屏(元素)(记得要加入等待) B.如果有就进行解锁,就一般的输入数字密码然后进行解锁(当然了你要知 ...
- [.NET] 一步步打造一个简单的 MVC 电商网站 - BooksStore(三)
一步步打造一个简单的 MVC 电商网站 - BooksStore(三) 本系列的 GitHub地址:https://github.com/liqingwen2015/Wen.BooksStore &l ...
- 踩坑实录 使用 cardview 时报错 error: No resource identifier found for attribute 'cardCornerRadius' in package 'com.xxxxx.xxx'
在项目中引用 cardview 卡片布局,编译时 Android Studio 报出下面图片中红框标记的错误: 出现这种情况的原因在于没有导入 cardview 卡片布局相应的依赖包,因此我们需要在 ...
- SPOJ - VISIBLEBOX [multiset的使用]
tags:[STL][sort][贪心]题解:做法:先对数组a进行排序,再将数组a从头到尾扫一遍,使用multiset维护最小值,如果,即将放入集合的数字>=最小值的两倍,那我们就删除掉多重集合 ...
- TCP/IP笔记(四)IP协议
前言 IP相当于OSI参考模型的第3层--网络层:主要作用是"实现终端节点之间的通信"又称"点对点通信". IP作为整个TCP/IP中至关重要的协议,主要负责将 ...