项目中有时候需要用到对数据进行关联分析,比如分析一个小商店中顾客购买习惯.

 package com.data.algorithm;

 import com.google.common.base.Splitter;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*; /**
* *********************************************************
* <p/>
* Author: XiJun.Gong
* Date: 2017-01-20 15:06
* Version: default 1.0.0
* Class description:
* <p/>
* *********************************************************
*/ class EOC { private static final Logger logger = LoggerFactory.getLogger(EOC.class);
private Map<String, Integer> fmap; //forward map
private Map<Integer, String> bmap; //backward map
private List<Map<String, Integer>> elements = null; private Integer maxDimension; public EOC(final String pathFile, String separatSeq) { BufferedReader bufferedReader = null;
try {
this.fmap = Maps.newHashMap();
this.bmap = Maps.newHashMap();
this.elements = Lists.newArrayList();
maxDimension = 0;
bufferedReader = new BufferedReader(
new InputStreamReader(
new FileInputStream(pathFile), "UTF-8"));
String _line = null;
Integer keyValue = null, mapIndex = 0;
while ((_line = bufferedReader.readLine()) != null) {
Map<String, Integer> lineMap = Maps.newHashMap();
if (_line.trim().length() > 1) {
if (separatSeq.trim().length() < 1) {
separatSeq = ",";
}
for (String word : Splitter.on(separatSeq).split(_line)) {
word = word.trim();
if (null == (keyValue = fmap.get(word))) {
keyValue = mapIndex++;
}
fmap.put(word, keyValue);
bmap.put(keyValue, word);
lineMap.put(word, keyValue);
}
if (maxDimension < lineMap.size())
maxDimension = lineMap.size();
elements.add(lineMap);
}
}
} catch (Exception e) {
logger.error("读取文件出错 , 错误原因:{}", e);
} finally {
if (bufferedReader != null) {
try {
bufferedReader.close();
} catch (IOException e) {
logger.error("bufferedReader , 错误原因:{}", e);
}
}
}
} public Integer getMaxDimension() {
return maxDimension;
} public float getRateOfSet(Collection<Integer> elementChild) {
float rateCnt = 0f;
int allSize = 1;
for (Map<String, Integer> eMap : elements) {
boolean flag = true;
for (Integer element : elementChild) {
if (null == eMap.get(bmap.get(element))) {
flag = false;
break;
}
}
if (flag) rateCnt += 1;
}
return rateCnt / ((allSize = elements.size()) > 1 ? (float) allSize : 1.0f);
} public Set<Integer> getElements() { return new HashSet<Integer>(fmap.values());
} public Integer queryByKey(String key) {
return fmap.get(key);
} public String queryByValue(Integer value) {
return bmap.get(value);
}
} public class Apriori {
private static final Logger logger = LoggerFactory.getLogger(Apriori.class);
private EOC eoc = null;
private Integer maxDimension;
private final float exp = 1e-4f; public Apriori(final String pathFile, String separatSeq, Integer maxDimension) {
this(pathFile, separatSeq);
this.maxDimension = maxDimension;
} public Apriori(final String pathFile, String separatSeq) {
this.eoc = new EOC(pathFile, separatSeq);
this.maxDimension = this.eoc.getMaxDimension();
} public void work(float confidenceLevel) {
List<Set<Integer>> listElement = null;
ArrayList<Set<Integer>> middleWareElement = null;
Map<Set<Integer>, Float> maps = null;
listElement = Lists.newArrayList();
for (Integer element : this.eoc.getElements()) {
Set<Integer> set = new HashSet<Integer>();
set.add(element);
listElement.add(set);
}
maps = Maps.newHashMap();
middleWareElement = Lists.newArrayList();
for (int i = 1; i < this.maxDimension; i++) {
for (Set<Integer> tmpSet : listElement) {
float rate = eoc.getRateOfSet(tmpSet);
if (confidenceLevel - exp <= rate)
maps.put(tmpSet, rate);
}
System.out.println("+++++++++++第 " + i + " 维度关联数据+++++++++++");
output(maps);
listElement.clear();
middleWareElement.addAll(maps.keySet());
maps.clear();
for (int j = 0; j < middleWareElement.size(); j++) {
Set<Integer> tmpSet = middleWareElement.get(j);
for (int k = j + 1; k < middleWareElement.size(); k++) {
Set<Integer> setChild = middleWareElement.get(k);
for (Integer label : setChild) {
if (!tmpSet.contains(label)) {
Set<Integer> newElement = new HashSet<Integer>(tmpSet);
newElement.add(label);
if (!listElement.contains(newElement)) {
listElement.add(newElement);
break;
}
}
}
}
}
middleWareElement.clear();
}
} public void output(Map<Set<Integer>, Float> maps) {
for (Map.Entry<Set<Integer>, Float> iter : maps.entrySet()) {
for (Integer integer : iter.getKey()) {
System.out.print(eoc.queryByValue(integer) + " ");
}
System.out.println(iter.getValue()*100+"%");
}
}
}

  

 package com.data.algorithm;

 /**
* *********************************************************
* <p/>
* Author: XiJun.Gong
* Date: 2017-01-17 17:57
* Version: default 1.0.0
* Class description:
* <p/>
* *********************************************************
*/
public class Main {
public static void main(String args[]) {
Apriori apriori = new Apriori("/home/com/src/main/java/com/qunar/data/algorithm/demo.data", ",");
apriori.work(0.5f);
}
}
 +++++++++++第 1 维度关联数据+++++++++++
苹果 50.0%
西红柿 75.0%
香蕉 75.0%
矿泉水 75.0%
+++++++++++第 2 维度关联数据+++++++++++
苹果 西红柿 50.0%
西红柿 香蕉 50.0%
西红柿 矿泉水 50.0%
香蕉 矿泉水 75.0%
+++++++++++第 3 维度关联数据+++++++++++
西红柿 香蕉 矿泉水 50.0%

数据挖掘之聚类算法Apriori总结的更多相关文章

  1. 续前篇---数据挖掘之聚类算法k-mediod(PAM)原理及实现

    上一篇博文中介绍了聚类算法中的kmeans算法.无可非议kmeans由于其算法简单加之分类效率较高 已经广泛应用于聚类应用中. 然而kmeans并非十全十美的.其对于数据中的噪声和孤立点的聚类带来的误 ...

  2. 数据挖掘之聚类算法K-Means总结

    序 由于项目需要,需要对数据进行处理,故而又要滚回来看看paper,做点小功课,这篇文章只是简单的总结一下基础的Kmeans算法思想以及实现: 正文: 1.基础Kmeans算法. Kmeans算法的属 ...

  3. [数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现

    聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记 ...

  4. 《数据挖掘导论》实验课——实验七、数据挖掘之K-means聚类算法

    实验七.数据挖掘之K-means聚类算法 一.实验目的 1. 理解K-means聚类算法的基本原理 2. 学会用python实现K-means算法 二.实验工具 1. Anaconda 2. skle ...

  5. 数据挖掘十大算法--K-均值聚类算法

    一.相异度计算  在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...

  6. 数据挖掘聚类算法(DBSCAN、Kmeans)Java实现

    学习聚类算法时,参考算法说明随手写的java实现,代码很简单,不多做说明啦,有需要的童鞋可以看看,自己也做个备录. http://files.cnblogs.com/files/yuananyun/% ...

  7. 一步步教你轻松学K-means聚类算法

    一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...

  8. 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

    其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...

  9. K-means聚类算法

    聚类分析(英语:Cluster analysis,亦称为群集分析) K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般.最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中, ...

随机推荐

  1. vue中使用keepAlive组件缓存遇到的坑

    项目开发中在用户由分类页category进入detail需保存用户状态,查阅了Vue官网后,发现vue2.0提供了一个keep-alive组件. 上一篇讲了keep-alive的基本用法,现在说说遇到 ...

  2. Asp.Net Web API(二)

    创建一个Web API项目 第一步,创建以下项目 当然,你也可以创建一个Web API项目,利用 Web API模板,Web API模板使用 ASP.Net MVC提供API的帮助页. 添加Model ...

  3. java小技术之生成二维码

    把我们需要的链接或者内容生成二维码其实是一件非常容易的事情,有很多办法可以实现,这里我们采用JS方法生成. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTM ...

  4. centos7 部署dns服务器

    =============================================== 2017/12/6_第2次修改                       ccb_warlock 20 ...

  5. 基于编辑距离来判断词语相似度方法(scala版)

    词语相似性比较,最容易想到的就是编辑距离,也叫做Levenshtein Distance算法.在Python中是有现成的模块可以帮助做这个的,不过代码也很简单,我这边就用scala实现了一版. 编辑距 ...

  6. Material Theme 文件名的标签(tab)被大写了

    我们平时使用的都是小写的,今天第一次使用Material Theme 这个发现标签被大写了,百度后没找到然后自己找了找设置,解决了 原来是这样的, 设置如下 设置后: 希望能帮到有同样问题的同学

  7. VS2010 Extension实践(3)——实现自定义配置

    在之前的两篇曾提到通过VSSDK(MSDN也叫VSX)来拓宽思路,实现一些MEF Extension所不能做到的功能,比如获取IVsUIShell服务来执行Command等等,这里我给各位看官展示如何 ...

  8. Python+selenium+eclipse+pydev自动化测试环境搭建

    一.        安装python 1.下载安装python 可访问python的官方网站:http://www.Python.prg找到下载页面下载需要的版本,可下载python2.x或者pyth ...

  9. java基础知识整理

    java基础入门知识(转载请注明出处.) 1.JVM.JRE和JDK的区别. (1)JVM(Java Virtual Machine):java虚拟机,用于保证java跨平台的特性,java语言是跨平 ...

  10. MicroPython-GPS教程之TPYBoardv702控制5110显示当前经纬度

    一.关于TPYBoardV702 TPYBoardV702是目前市面上唯一支持通信定位功能的MicroPython开发板:支持Python3.0及以上版本直接运行.支持GPS+北斗双模定位.GPRS通 ...