tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

官方教程说明:

给定四维的inputfilter tensor,计算一个二维卷积

Args:
  • input: A Tensor. type必须是以下几种类型之一: halffloat32float64.
  • filter: A Tensor. type和input必须相同
  • strides: A list of ints.一维,长度4, 在input上切片采样时,每个方向上的滑窗步长,必须和format指定的维度同阶
  • padding: A string from: "SAME", "VALID". padding 算法的类型
  • use_cudnn_on_gpu: An optional bool. Defaults to True.
  • data_format: An optional string from: "NHWC", "NCHW", 默认为"NHWC"
    指定输入输出数据格式,默认格式为"NHWC", 数据按这样的顺序存储:
    [batch, in_height, in_width, in_channels]
    也可以用这种方式:"NCHW", 数据按这样的顺序存储:
    [batch, in_channels, in_height, in_width]
  • name: 操作名,可选.
Returns:

Tensor. type与input相同

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, out_channels]

conv2d实际上执行了以下操作:

  1. 将filter转为二维矩阵,shape为
    [filter_height * filter_width * in_channels, output_channels].
  2. 从input tensor中提取image patches,每个patch是一个virtual tensor,shape[batch, out_height, out_width, filter_height * filter_width * in_channels].
  3. 将每个filter矩阵和image patch向量相乘

具体来讲,当data_format为NHWC时:

output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]

input 中的每个patch都作用于filter,每个patch都能获得其他patch对filter的训练
需要满足strides[0] = strides[3] = 1. 大多数水平步长和垂直步长相同的情况下:strides = [1, stride, stride, 1].

下面举例来进行说明

在最基本的例子中,没有padding和stride = 1。让我们假设你的inputkernel有:

当您的内核您将收到以下输出:,它按以下方式计算:

  • 14 = 4 * 1 + 3 * 0 + 1 * 1 + 2 * 2 + 1 * 1 + 0 * 0 + 1 * 0 + 2 * 0 + 4 * 1
  • 6 = 3 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 0 * 1 + 1 * 0 + 2 * 0 + 4 * 0 + 1 * 1
  • 6 = 2 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 2 * 1 + 4 * 0 + 3 * 0 + 1 * 0 + 0 * 1
  • 12 = 1 * 1 + 0 * 0 + 1 * 1 + 2 * 2 + 4 * 1 + 1 * 0 + 1 * 0 + 0 * 0 + 2 * 1

TF的conv2d函数批量计算卷积,并使用稍微不同的格式。对于一个输入,它是[batch, in_height, in_width, in_channels]内核的[filter_height, filter_width, in_channels, out_channels]。所以我们需要以正确的格式提供数据:

import tensorflow as tf
k = tf.constant([
[1, 0, 1],
[2, 1, 0],
[0, 0, 1]
], dtype=tf.float32, name='k')
i = tf.constant([
[4, 3, 1, 0],
[2, 1, 0, 1],
[1, 2, 4, 1],
[3, 1, 0, 2]
], dtype=tf.float32, name='i')
kernel = tf.reshape(k, [3, 3, 1, 1], name='kernel')
image = tf.reshape(i, [1, 4, 4, 1], name='image')

之后,卷积用下式计算:

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 1, 1, 1], "VALID"))
# VALID means no padding
with tf.Session() as sess:
print sess.run(res)

并将相当于我们手工计算的,输出结果:

[[ 14. 6.]
[ 6. 12.]]

附上一张图:

区别SAME和VALID

VALID

input = tf.Variable(tf.random_normal([1,5,5,5]))  

filter = tf.Variable(tf.random_normal([3,3,5,1]))  

op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')  

输出图形:

.....
.xxx.
.xxx.
.xxx.
.....

SAME

input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')

输出图形:

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

参考链接

TensorFlow conv2d原理及实践的更多相关文章

  1. 转:fastText原理及实践(达观数据王江)

    http://www.52nlp.cn/fasttext 1条回复 本文首先会介绍一些预备知识,比如softmax.ngram等,然后简单介绍word2vec原理,之后来讲解fastText的原理,并 ...

  2. 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】

    转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...

  3. Atitit 管理原理与实践attilax总结

    Atitit 管理原理与实践attilax总结 1. 管理学分类1 2. 我要学的管理学科2 3. 管理学原理2 4. 管理心理学2 5. 现代管理理论与方法2 6. <领导科学与艺术4 7. ...

  4. Atitit.ide技术原理与实践attilax总结

    Atitit.ide技术原理与实践attilax总结 1.1. 语法着色1 1.2. 智能提示1 1.3. 类成员outline..func list1 1.4. 类型推导(type inferenc ...

  5. Atitit.异步编程技术原理与实践attilax总结

    Atitit.异步编程技术原理与实践attilax总结 1. 俩种实现模式 类库方式,以及语言方式,java futuretask ,c# await1 2. 事件(中断)机制1 3. Await 模 ...

  6. Atitit.软件兼容性原理与实践 v5 qa2.docx

    Atitit.软件兼容性原理与实践   v5 qa2.docx 1. Keyword2 2. 提升兼容性的原则2 2.1. What 与how 分离2 2.2. 老人老办法,新人新办法,只新增,少修改 ...

  7. Atitit 表达式原理 语法分析 原理与实践 解析java的dsl  递归下降是现阶段主流的语法分析方法

    Atitit 表达式原理 语法分析 原理与实践 解析java的dsl  递归下降是现阶段主流的语法分析方法 于是我们可以把上面的语法改写成如下形式:1 合并前缀1 语法分析有自上而下和自下而上两种分析 ...

  8. Atitit.gui api自动化调用技术原理与实践

    Atitit.gui api自动化调用技术原理与实践 gui接口实现分类(h5,win gui, paint opengl,,swing,,.net winform,)1 Solu cate1 Sol ...

  9. Atitit.提升语言可读性原理与实践

    Atitit.提升语言可读性原理与实践 表1-1  语言评价标准和影响它们的语言特性1 1.3.1.2  正交性2 1.3.2.2  对抽象的支持3 1.3.2.3  表达性3 .6  语言设计中的权 ...

随机推荐

  1. 使用java实现发送邮件的功能

    首先要在maven添加javamail支持 <dependency> <groupId>javax.activation</groupId> <artifac ...

  2. 小白审计JACKSON反序列化漏洞

    1. JACKSON漏洞解析 poc代码:main.java import com.fasterxml.jackson.databind.ObjectMapper; import com.sun.or ...

  3. js判断是否是ie浏览器且给出ie版本

    之前懒得写判断ie版本js,因为网上关于这方面的代码太多了,所以从网上拷贝了一个,放到项目上才发现由于时效性的问题,代码不生效.就自己写一个吧. 怎么去看浏览器的内核等信息 ---- js的全局对象w ...

  4. 学习总结------用JDBC连接MySQL

    1.下载MySQL的JDBC驱动 地址:https://dev.mysql.com/downloads/connector/ 为了方便,直接就选择合适自己的压缩包 跳过登录,选择直接下载 下载完成后, ...

  5. Ubuntu下录音机程序的使用

    在Ubuntu中使用系统自带的录音机程序可以录制电脑的音频输出(比如,电脑正在播放视频的声音),或录制外部环境音频输入(比如,自己说话的声音) 1.录制电脑音频输出 在“硬件”选项中,将”选中设备的设 ...

  6. eclipse下启动tomcat项目,访问tomcat默认端口显示404错误

    解决:打开eclipse的server视图,双击你配置的那个tomcat,打开编辑窗口,查看server locations,看看是否选择了第一个选项(默认是第一个选项),即use workspace ...

  7. WCF入门, 到创建一个简单的WCF应用程序

    什么是WCF?  WCF, 英文全称(windows Communication Foundation) , 即为windows通讯平台. windows想到这里大家都知道了 , WCF也正是由微软公 ...

  8. Laravel踩坑笔记——illuminate/html被抛弃

    起因 在使用如下代码的时候发生报错 {!! Form::open() !!} 错误信息 [Symfony\Component\Debug\Exception\FatalErrorException] ...

  9. 摘记:Web应用系统测试内容

    表示层: 内容测试,包括整体审美.字体.色彩.拼写.内容准确性和默认值 Web站点结构,包括无效的链接或图形 用户环境,包括Web浏览器版本和操作系统配置(每一个浏览器都有不同的脚本引擎或虚拟机在客户 ...

  10. 移动端APP CSS Reset及注意事项CSS重置

    @charset "utf-8"; * { -webkit-box-sizing: border-box; box-sizing: border-box; } //禁止文本缩放 h ...