tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

官方教程说明:

给定四维的inputfilter tensor,计算一个二维卷积

Args:
  • input: A Tensor. type必须是以下几种类型之一: halffloat32float64.
  • filter: A Tensor. type和input必须相同
  • strides: A list of ints.一维,长度4, 在input上切片采样时,每个方向上的滑窗步长,必须和format指定的维度同阶
  • padding: A string from: "SAME", "VALID". padding 算法的类型
  • use_cudnn_on_gpu: An optional bool. Defaults to True.
  • data_format: An optional string from: "NHWC", "NCHW", 默认为"NHWC"
    指定输入输出数据格式,默认格式为"NHWC", 数据按这样的顺序存储:
    [batch, in_height, in_width, in_channels]
    也可以用这种方式:"NCHW", 数据按这样的顺序存储:
    [batch, in_channels, in_height, in_width]
  • name: 操作名,可选.
Returns:

Tensor. type与input相同

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, out_channels]

conv2d实际上执行了以下操作:

  1. 将filter转为二维矩阵,shape为
    [filter_height * filter_width * in_channels, output_channels].
  2. 从input tensor中提取image patches,每个patch是一个virtual tensor,shape[batch, out_height, out_width, filter_height * filter_width * in_channels].
  3. 将每个filter矩阵和image patch向量相乘

具体来讲,当data_format为NHWC时:

output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]

input 中的每个patch都作用于filter,每个patch都能获得其他patch对filter的训练
需要满足strides[0] = strides[3] = 1. 大多数水平步长和垂直步长相同的情况下:strides = [1, stride, stride, 1].

下面举例来进行说明

在最基本的例子中,没有padding和stride = 1。让我们假设你的inputkernel有:

当您的内核您将收到以下输出:,它按以下方式计算:

  • 14 = 4 * 1 + 3 * 0 + 1 * 1 + 2 * 2 + 1 * 1 + 0 * 0 + 1 * 0 + 2 * 0 + 4 * 1
  • 6 = 3 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 0 * 1 + 1 * 0 + 2 * 0 + 4 * 0 + 1 * 1
  • 6 = 2 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 2 * 1 + 4 * 0 + 3 * 0 + 1 * 0 + 0 * 1
  • 12 = 1 * 1 + 0 * 0 + 1 * 1 + 2 * 2 + 4 * 1 + 1 * 0 + 1 * 0 + 0 * 0 + 2 * 1

TF的conv2d函数批量计算卷积,并使用稍微不同的格式。对于一个输入,它是[batch, in_height, in_width, in_channels]内核的[filter_height, filter_width, in_channels, out_channels]。所以我们需要以正确的格式提供数据:

import tensorflow as tf
k = tf.constant([
[1, 0, 1],
[2, 1, 0],
[0, 0, 1]
], dtype=tf.float32, name='k')
i = tf.constant([
[4, 3, 1, 0],
[2, 1, 0, 1],
[1, 2, 4, 1],
[3, 1, 0, 2]
], dtype=tf.float32, name='i')
kernel = tf.reshape(k, [3, 3, 1, 1], name='kernel')
image = tf.reshape(i, [1, 4, 4, 1], name='image')

之后,卷积用下式计算:

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 1, 1, 1], "VALID"))
# VALID means no padding
with tf.Session() as sess:
print sess.run(res)

并将相当于我们手工计算的,输出结果:

[[ 14. 6.]
[ 6. 12.]]

附上一张图:

区别SAME和VALID

VALID

input = tf.Variable(tf.random_normal([1,5,5,5]))  

filter = tf.Variable(tf.random_normal([3,3,5,1]))  

op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')  

输出图形:

.....
.xxx.
.xxx.
.xxx.
.....

SAME

input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')

输出图形:

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

参考链接

TensorFlow conv2d原理及实践的更多相关文章

  1. 转:fastText原理及实践(达观数据王江)

    http://www.52nlp.cn/fasttext 1条回复 本文首先会介绍一些预备知识,比如softmax.ngram等,然后简单介绍word2vec原理,之后来讲解fastText的原理,并 ...

  2. 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】

    转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...

  3. Atitit 管理原理与实践attilax总结

    Atitit 管理原理与实践attilax总结 1. 管理学分类1 2. 我要学的管理学科2 3. 管理学原理2 4. 管理心理学2 5. 现代管理理论与方法2 6. <领导科学与艺术4 7. ...

  4. Atitit.ide技术原理与实践attilax总结

    Atitit.ide技术原理与实践attilax总结 1.1. 语法着色1 1.2. 智能提示1 1.3. 类成员outline..func list1 1.4. 类型推导(type inferenc ...

  5. Atitit.异步编程技术原理与实践attilax总结

    Atitit.异步编程技术原理与实践attilax总结 1. 俩种实现模式 类库方式,以及语言方式,java futuretask ,c# await1 2. 事件(中断)机制1 3. Await 模 ...

  6. Atitit.软件兼容性原理与实践 v5 qa2.docx

    Atitit.软件兼容性原理与实践   v5 qa2.docx 1. Keyword2 2. 提升兼容性的原则2 2.1. What 与how 分离2 2.2. 老人老办法,新人新办法,只新增,少修改 ...

  7. Atitit 表达式原理 语法分析 原理与实践 解析java的dsl  递归下降是现阶段主流的语法分析方法

    Atitit 表达式原理 语法分析 原理与实践 解析java的dsl  递归下降是现阶段主流的语法分析方法 于是我们可以把上面的语法改写成如下形式:1 合并前缀1 语法分析有自上而下和自下而上两种分析 ...

  8. Atitit.gui api自动化调用技术原理与实践

    Atitit.gui api自动化调用技术原理与实践 gui接口实现分类(h5,win gui, paint opengl,,swing,,.net winform,)1 Solu cate1 Sol ...

  9. Atitit.提升语言可读性原理与实践

    Atitit.提升语言可读性原理与实践 表1-1  语言评价标准和影响它们的语言特性1 1.3.1.2  正交性2 1.3.2.2  对抽象的支持3 1.3.2.3  表达性3 .6  语言设计中的权 ...

随机推荐

  1. Android 图片加载框架Glide4.0源码完全解析(一)

    写在之前 上一篇博文写的是Picasso基本使用和源码完全解析,Picasso的源码阅读起来还是很顺畅的,然后就想到Glide框架,网上大家也都推荐使用这个框架用来加载图片,正好我目前的写作目标也是分 ...

  2. Bash中的特殊变量和位置参量

    位置参量:向脚本或函数传递的参数,可以被set命令设置.重置和清空. 1.$$ 当前Shell的PID 2.$- 当前Shell的选项,如果是交互式shell,应该包含字符i,例如$ echo $-h ...

  3. GA代码中的细节

    GA-BLX交叉-Gaussion变异 中的代码细节: 我写了一个GA的代码,在2005测试函数上一直不能得到与实验室其他同学类似的数量级的结果.现在参考其他同学的代码,发现至少有如下问题: 1.在交 ...

  4. Qt开发陷阱一QSTACKWIDGET

    原始日期:2015-10-14 00:55 1.使用QStackWidget控件的setCurrentIndex方法时,要注意参数0对应着ui上StackWidget的page1,而不是page0,没 ...

  5. C#继承的执行顺序

    自己对多态中构造函数.函数重载执行顺序和过程一直有些不理解,经过测试,对其中的运行顺序有了一定的了解,希望对初学者有些帮助. eg1: public class A { public A() { Co ...

  6. Vulkan Tutorial 22 Index buffer

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 在实际产品的运行环境中3D模型的数据往往共享多个三角形之间 ...

  7. my97自定义事件

    onFocus="WdatePicker({onpicked:function(){alert(0);}})"

  8. 通过java反射得到javabean的属性名称和值参考

    通过java反射得到javabean的属性名称和值 Field fields[]=cHis.getClass().getDeclaredFields();//cHis 是实体类名称 String[] ...

  9. 一些css书写的小技巧

    一.css顺序 首先声明,浏览器读取css的方式是从上到下的.我们一般书写css只要元素具备这些属性就会达到我们预期的效果,但是这会给以后的维护和浏览器的渲染效率带来一定的影响,那么该怎么书写css的 ...

  10. mysql in 和 not in 语句用法

    1.mysql in语句 select * from tb_name where id in (10,12,15,16);2.mysql not in 语句 select * from tb_name ...