WiFi网络WPA2 KRACK漏洞分析报告
作者:东帆@阿里安全技术平台团队
————————
0x00 漏洞概述
安全研究员Mathy Vanhoef发现的WPA2协议的KRA(Key Reinstallation Attacks)漏洞,利用WPA2协议标准加密密钥生成机制上的设计缺陷,四次握手协商加密密钥过程中第三个消息报文可被篡改重放,导致在用密钥被重新安装。
WiFi网络通过WPA2 handshake四次握手消息协商用于后续数据通信的加密密钥,其中交互的第三个消息报文被篡改重放,可导致中间人攻击重置重放计数器(replay counter)及随机数值(nonce),重放给client端,使client安装上不安全的加密密钥。
此漏洞攻击方式被命名为Key reinstallation attacks密钥重装攻击,除了影响已经在用的数据加密密钥,同时也影响PeerKey, group key, Fast BSS切换FT握手等,会导致WiFi通信数据加密通道不安全,存在被嗅探、篡改和重放等风险,攻击者可获取WiFi网络中的数据信息。
几乎所有支持Wi-Fi的设备(Android, Linux, Apple, Windows, OpenBSD, MediaTek, Linksys等)都面临安全威胁,危害较大。
该漏洞相关影响取决于被攻击的握手过程和数据加密协议,例如AES-CCMP可被重放和解密,TCP流量存在被劫持和注入恶意流量的可能,WPATKIP和GCMP可被重放、篡改及解密,影响会更大,因为GCMP两端使用的相同的认证密钥。
相关CVE如下,其中每个CVE代表一种特定场景下的密钥重装攻击。
l CVE-2017-13077: 四次握手过程中重装PTK-TK加密密钥对
l CVE-2017-13078: 四次握手过程中重装GTK
l CVE-2017-13079: 四次握手过程中重装IGTK
l CVE-2017-13080: Group key 握手过程中重装GTK
l CVE-2017-13081: 握手过程中重装IGTK
l CVE-2017-13082: 接收重传的快速BSS切换重关联请求,在处理过程中重安装PTK-TK加密密钥对
l CVE-2017-13084: 在PeerKey握手过程中重安装STK KEY
l CVE-2017-13086: 在DTLS握手过程中重安装TDLS PeerKey
l CVE-2017-13087: 在处理WNM睡眠模式响应帧过程中重安装GTK
l CVE-2017-13088: 在处理WNM睡眠模式响应帧过程中重安装IGTK
漏洞攻击演示视频:
https://www.youtube.com/watch?v=BtdN1SM5Z5o
0x01 WPA2协议介绍
WPA全名为Wi-Fi Protected Access,有WPA和WPA2两个标准, WPA(Wi-Fi Protected Access)加密方式目前有四种认证方式:WPA、WPA-PSK、WPA2、WPA2-PSK,采用的加密算法有两种:AES(Advanced Encryption Standard高级加密算法)和TKIP(Temporal Key Integrity Protocol临时密钥完整性协议)。
由于WEP已被证明为不安全的协议,在802.11i协议完善前,采用WPA为用户提供一个临时性的解决方案。该标准的数据加密采用TKIP协议(Temporary Key Integrity Protocol),TKIP的两个主要功能是:逐包密钥及消息完整性检查(MIC),与WEP相同的加密算法RC4来实现这一点,虽然TKIP解决了所有已知的WEP问题,但WPA2的AES加密更安全,适应更广泛的工业标准并在实践中广泛使用。
WPA2是WPA的增强型版本,与WPA相比,WPA2新增了支持AES的加密方式,采用AES加密机制。
0x02 Key reinstallation attacks密钥重装攻击
四次握手协商密钥过程中消息报文见图1EAPOL格式,其中重放计数replay counter字段用于检测重复报文,每次发送一个报文,重放计数加一,nonce字段为加密密钥生成所需要的随机数。

图1 EAPOL帧简化报文格式
以group key为例,首先Client进入PTK-INIT状态,初始化(PMK),当接收到消息1进入PTK_START状态,client会生成随机数SNonce,计算临时TPTK,发送消息2(带SNonce)到AP,当Client接收到消息3,replay counter重放计数等有效的条件下,进入PTK-NEGOTIATING协商状态,同时标记TPTK为有效,发送消息4到AP,然后直接进入PTK-DONE状态,使用MLME-SETKEYS安装KEY。特别注意的是,此状态机过程来自于802.11标准,清晰的考虑了未收到消息2或者4的情况,消息1或者3会继续重传。具体如下:

图2 四次握手状态机,KEY用MLME-SETKEYS.request命令字进行安装
当client作为Supplicant加入wifi网络,client与AP认证端Authenticator进行四次握手协商新的加密密钥,见下图3,在接收到四次握手中的第3个消息报文时会安装新生成的加密密钥,后续数据通信使用该密钥进行数据加密。
因为报文可能丢失,如果AP未接收到client的响应会重发第三个消息报文,所以client可能重复接收到第3个消息报文多次。每次当client接收到此消息,都会重新安装相同的加密密钥,然后重置协议加密使用到的nonce值及重放计数。
攻击者可通过嗅探、重放四次握手过程中的第3个消息报文,强制重置协议加密使用到的nonce值及重放计数,重安装加密密钥,从而攻击协议的加密机制,数据报文可被重放、解密及篡改。
该攻击方法同时可用于攻击已在使用的加密密钥、group key、PeerKey, TDLS及快速BSS切换握手等。

图3 Group Key场景四次握手
0x03 漏洞根因分析及影响
802.11协议标准仅提供描述粗粒度的伪码描述四次握手的状态机,但并未清晰描述特定的握手消息应该在什么时候处理。
密钥重装漏洞滥用了消息3重传的流程,首先在Client和AP之间确定MitM中间人攻击的点,在AP接收到消息4之前不断重传篡改后的消息3,导致Client重新安装已用的加密密钥,同时重置nonce值。
实际情况,实施此攻击的时候,并非所有的Wi-Fi客户端client都正确实现了此状态机,Windows和iOS未接收处理消息3的重传,这违背了802.11标准,所以密钥重装漏洞攻击的时候并未生效产生漏洞,但在group key握手的场景下仍然存在安全漏洞,此外在FT握手情况下仍可能被间接攻击。
对于Android 6.0影响更大,在此攻击的情况下,强制使用了可预测全零的加密密钥。
密钥重装漏洞攻击实际影响如下图4,第一列代表不同类型的Client客户端,第2列表示不同Client类型是否接受消息3,第三列表示如果PTK配置,EAPOL消息明文是否接收,第4列表示首个消息3报文快速发送后是否接收明文EAPOL报文,最后两列表示是否受到此漏洞攻击的影响。
特别需要注意的,研究者当前并没有破解Wi-Fi网络的密码,也并没有通过四次握手协商过程的攻击破解新生成的加密密钥。

图4不同Clients的实际漏洞效果
0x04 漏洞影响范围
此漏洞存在于协议标准设计缺陷,所有支持WPA2的客户端都受到影响。
攻击主要面向WPA2客户端设备。
0x05 漏洞安全加固建议
1、 漏洞攻击需要实施MitM中间人攻击,条件许可建议合理部署无线入侵防御系统或者VPN加密,及时监测恶意钓鱼WiFi,禁止私搭AP等;
2、 及时升级此漏洞的安全补丁(有补丁的情况),更新WPA2客户端到最新版本;
3、 仅连接可信wifi,公共场合尽量使用蜂窝移动网络,wifi连接不用的情况下建议禁用,攻击面最小化。
注:
Linux的hostapd和wpa_supplicant补丁已公布,详见 https://w1.fi/security/2017-1/。
微软在Windows 10操作系统中发布补丁KB4041676。
苹果在最新的beta版本iOS等中修复了无线网络安全漏洞。
参考文档:
[1] https://papers.mathyvanhoef.com/ccs2017.pdf
[2]https://techcrunch.com/2017/10/16/wpa2-shown-to-be-vulnerable-to-key-reinstallation-attacks/
-------------------------------
更多安全类热点信息和知识分享,请关注阿里聚安全的官方博客
WiFi网络WPA2 KRACK漏洞分析报告的更多相关文章
- CVE-2012-0158 漏洞分析报告
Office 2003 sp3(CVE-2012-0158)漏洞分析报告 软件名称:Office 2003 sp3 软件版本:2.0 漏洞模块:MSCOMCTL.ocx 模块版本:2.0.0. ...
- Android APP通用型拒绝服务、漏洞分析报告
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞(目前腾讯金刚审计系统已经可检测此类漏洞),移动安全团队发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧. 0xr0 ...
- office(CVE-2012-0158)漏洞分析报告
2019/9/12 1.漏洞复现 ①发现崩溃 ②找到漏洞所在的函数,下断点,重新跑起来,单步调试,找到栈被改写的地方 ③分析该函数 把MSCOMCTL拖入IDA,查看该函数代码 ④查看调用栈,回溯. ...
- Intel CPU 漏洞分析
Intel CPU漏洞分析报告 预备知识 存储分级 由于计算机存储分级的特性(第一级:寄存器,第二级:高速缓存,第三级:内存,第四级:磁盘),每一级之间的访问速度差距高达数量级.所以处理器会将用到的数 ...
- 抓住“新代码”的影子 —— 基于GoAhead系列网络摄像头多个漏洞分析
PDF 版本下载:抓住“新代码”的影子 —— 基于GoAhead系列网络摄像头多个漏洞分析 Author:知道创宇404实验室 Date:2017/03/19 一.漏洞背景 GoAhead作为世界上最 ...
- Google发布SSLv3漏洞简要分析报告
今天上午,Google发布了一份关于SSLv3漏洞的简要分析报告.根据Google的说法,该漏洞贯穿于所有的SSLv3版本中,利用该漏洞,黑客可以通过中间人攻击等类似的方式(只要劫持到的数据加密两端均 ...
- WiFi曝出安全漏洞几近“裸奔”:运营商能借机收割一波红利吗?
作为大众生活中不可或缺的基础架构,也是智能生活普及的推动性力量,运营商的重要性毋庸置疑.但无奈的是,一直以来运营商都似乎是站在了大众的"对立面".看似光鲜亮丽,但在壮观的 ...
- 20145211 《Java程序设计》实验报告五————Java网络编程及安全实验报告
实验内容 1.掌握Socket程序的编写: 掌握密码技术的使用: 设计安全传输系统. 实验步骤 这一部分是与我的partner合作的,详见他的博客- [20145326 <Java程序设计> ...
- 如何使用Reaver破解Wi-Fi网络的WPA密码
via: http://lifehacker.com/5873407/how-to-crack-a-wi+fi-networks-wpa-password-with-reaver 译者:Mr小眼儿 本 ...
随机推荐
- 个人总结-Alpha阶段
一.个人总结 经过几周的Alpha阶段,对于软件设计有了大概的认识,也深刻感觉到一款软件设计出来的不易,每款软件背后都是开发人员辛勤的汗水.在软件开发的过程中,也是会出现很多的问题,出现各种各样的bu ...
- Swing-布局管理器之GridLayout(网格布局)-入门
注:本文内容源自于三十一.Java图形化界面设计——布局管理器之GridLayout(网格布局),笔者在学习过程中根据自身理解修改了部分代码. 网格布局特点: l 使容器中的各组件呈M行×N列的网格 ...
- 201521123008《Java程序设计》第六周实验总结
1.本周学习总结 2.书面作业 1.clone方法 1.1 Object对象中的clone方法是被protected修饰,在自定义的类中覆盖clone方法时需要注意什么? 因为被protected修饰 ...
- 201521123010 《Java程序设计》第5周学习总结
1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 2. 书面作业 作业参考文件下载 ① 代码阅读:Child压缩包内源代码 1.1 com.parent包中Child.java ...
- 201521123078《java程序设计》第四次总结
1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. 继承是面向对象最显著的一个特性.继承是从已有的类中派生出新的类,新的类能吸收已有类的数据属性 ...
- 201521123016 《Java程序设计》第2周学习总结
1. 本周学习总结 JAVA中string对象创建后不可修改. 使用StringBuilder编写代码,减少内存空间的占用. 字符串使用"+"拼接,拼接后其他类型会被转化为字符串. ...
- backtrack 使用Tab键补全命令
刚安装个BackTrack5(基于Ubuntu)做安全测试,发现默认安全设置级别很高,连ssh服务默认都关闭,root下不能使用tab键补全命令,这个就真不方便了.原因是root的配置文件注释了三行脚 ...
- 201521123003《Java程序设计》第12周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 书面作业 将Student对象(属性:int id, String name,int age,doubl ...
- SAP中常用SM系列事务代码总结
SM01 锁定事物 SM02 系统信息 SM04 显示在线用户 SM12 删除,显示锁对象 SM13 看update request SM21 看下系统日志 SM30|SM31 维护table|vi ...
- SpringSecurity 登录 - 以及Md5加密
我们现在开放一个链接给其他系统,来访问我们的系统 http://localhost:8080/hulk-teller-web/haihui!init.jspa?loginId=teller01& ...