Bayesian CTR Prediction for Bing
Microsoft published a paper in ICML 2009 named ‘Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine’, which is claimed won the competition of most accurate and scalable CTR predictor across MS. This article shows how to inference this model(let’s call it Ad predictor) step-by-step.
Pros. and Cons.
I like it because it’s totally based on Bayesian, and Bayesian is beautiful. Online learning is naturally supported, and the precition accuracy is comparable with FTRL and OWLQN. And both training and prediction is light-weight and fast. Btw: one shortage of this model is it’s not sparse, which may be a big issue when applied on big dataset with huge amount of features.
Inference using Expectation Propagation step by step
Firstly, following is the factor graph of ad predictor.

















For each sample, we can use the formula of step 13 to update the posterior parameter of W, which is very easy to be implemented.
Prediction
After training, we can predict with following formula:
Prediction Accuracy
I compared it with FTRL and OWLQN on one dataset for age&gender prediction. AUC of this model is comparable with OWLQN and FTRL, so I recommend you have a try in your case.
Insights
1). You can find variance of each feature increases after every exposure, which makes sense.
2). This model shows samples with more features will have bigger variance, which does not make sense very much. I think the reason is we assume all the features are independent. Any insights from you?
Bayesian CTR Prediction for Bing的更多相关文章
- A Bayesian election prediction, implemented with R and Stan
If the media coverage is anything to go by, people are desperate to know who will win the US electio ...
- DeepFM: A Factorization-Machine based Neural Network for CTR Prediction (2017)论文要点
论文链接: https://arxiv.org/pdf/1703.04247.pdf FM原理参考: Factorization Machines with libFM 论文阅读 https://w ...
- Expectation Propagation: Theory and Application
原文:http://dongguo.me/blog/2014/01/01/expectation-propagation/ 简介 第一次接触EP是10年在百度实习时,当时组里面正有计划把线上的CTR预 ...
- 深度学习在 CTR 中应用
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:高航 一. Wide&&Deep 模型 首先给出Wide && Deep [1] 网络结构: 本质上 ...
- 主流CTR预估模型的演化及对比
https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏. ...
- 深度学习在CTR预估中的应用
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ e ...
- 闲聊DNN CTR预估模型
原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张 ...
- CTR深度学习
深度学习在 CTR 中应用 一. Wide&&Deep 模型 首先给出Wide && Deep [1] 网络结构: 本质上是线性模型(左边部分, Wide model) ...
- (读论文)推荐系统之ctr预估-DeepFM模型解析
今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问 ...
随机推荐
- jmeter性能测试 套路一
真的跑压力,都是master-slave的方式,部署在压力机上跑性能测试 本机一般都是调试.
- 浅析HTTP协议的请求报文和响应报文
1.HTTP协议与报文简介 HTTP(hypertext transport protocol),即超文本传输协议.这个协议详细规定了浏览器和万维网服务器之间互相通信的规则. 而客户端与服务端通信时 ...
- diplay:table-cell和伪元素:after方法让图片居中
让图片居中和文字居中是不一样的,文字居中可以通过line-height等调整,让图片居中方法,参考各种资料博文和测试 目前接触两种方法 display:table-cell和伪元素:after方法 ...
- 垃圾收集器Serial 、Parallel、CMS、G1
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt378 这里介绍4个垃圾收集器,如果进行了错误的选择将会大大的影响程序的性能. ...
- centos 7 && dotnet core 2.0 && nginx && supervisor
前提 系统:centos 7 目录:/home/wwwroot/www.wuball.com dotnet core 2.0 官方指引 sudo rpm --import https://packag ...
- xml字符串转对象xml文件转对象
判断是否是ie浏览器和非ie浏览器的方法有多种,在此只介绍用例中的方法: 1.解析xml字符串,得到xml对象的方式: function createXml(str){ if(document.all ...
- 简易版jQuery——mQuery
前面的话 虽然jQuery已经日渐式微,但它里面的许多思想,如选择器.链式调用.方法函数化.取赋值合体等,有的已经变成了标准,有的一直影响到现在.所以,jQuery是一个伟大的前端框架.前端世界日新月 ...
- 聊聊click延迟和点击穿透
博客原文地址:Claiyre的个人博客 https://claiyre.github.io/ 如需转载,请在文章开头注明原文地址 移动端click事件被延迟 移动端的开发经常需要监听用户的双击行为,所 ...
- linux下文件和目录
(1)普通文件(regular file):这是最常用的文件类型,这种文件包含了某种形式的数据,文件内容的解释由处理该文件的应用程序进行. (2)目录文件(directory file):这种文件包含 ...
- [转载]dreamweaver代码提示失效
原文地址:dreamweaver代码提示失效作者:云中雁 2007-03-23 12:19:22| 分类: 编程手记 | 标签:web2.0 javascript |字号大中小 订阅 吴庆民 ...