This is a Natural Merge Sort program from my textbook. It works, but I don't think it's good.

// Natural merge sort program in the textbook

public class NaturalMergeSortProgram {

    public static void main(String[] args)
{
int a[] = new int[10000000];
int b[] = new int[a.length];
for (int i = 0; i < a.length; i++)
a[i] = (int)(1+Math.random()*(1000-1+1));
long starTime=System.currentTimeMillis();
NaturalMergeSort(a, b);
long endTime=System.currentTimeMillis();
long Time = endTime - starTime;
System.out.println("executing time: "+Time+"(ms)");
/*for (int i = 0; i < b.length; i++)
{ if (i % 20 == 0)
System.out.println();
System.out.print(a[i]+" ");
}*/
} public static void NaturalMergeSort(int a[], int b[])
{ // merge array a into b and then b into a until sorted
while (!MergeRuns(a, b) & !MergeRuns(b, a));
} public static boolean MergeRuns(int a[], int b[])
{
int i = 0, k = 0;
int n = a.length;
boolean asc = true;
int x;
while (i < n)
{
k = i;
do
x = a[i++];
while (i < n && x <= a[i]); // elements are increasing while (i < n && x >= a[i]) // elements are decreasing
x = a[i++];
merge(a, b, k , i-1, asc);
asc = !asc;
}
return k == 0;
} public static void merge(int a[], int b[], int low, int high, boolean asc)
{ // merge a[low:high] into b[low:high]
int k = asc ? low : high;
int c = asc ? 1 : -1;
int i = low, j = high;
while (i <= j)
{
if (a[i] <= a[j])
b[k] = a[i++];
else
b[k] = a[j--];
k += c;
}
} }

Or maybe I don't get it? Because it's rather obscure and lack of comments( these comments are all added by me).

So I decide to write my own Natural Merge Sort program:

// My own natural merge sort program
public class MyNaturalMergeSort { public static void main(String args[]) {
int a[] = new int[10000000];
int b[] = new int[a.length];
for (int i = 0; i < a.length; i++)
a[i] = (int)(1+Math.random()*(1000-1+1)); long starTime=System.currentTimeMillis();
while (!NaturalMergeSort(a, b) && !NaturalMergeSort(b, a));
long endTime=System.currentTimeMillis();
long Time = endTime - starTime;
System.out.println("executing time: "+Time+"(ms)");
for (int i = 0; i < 100; i++)
{ if (i % 20 == 0)
System.out.println();
System.out.print(a[9999*i]+" ");
}
System.out.println(a[a.length-1]);
} public static boolean NaturalMergeSort(int x[], int y[]) {
// find the two adjacent natural increasing arrays x[l:m] and x[m+1:r],
// then merge them into y[l:r] using function merge()
int i, l = 0, m = 0, r;
for (i = 0; i < x.length; i++)
{ l = i;
while ((i < x.length-1) && (x[i] <= x[i+1])) // get x[l:m]
i++;
m = i++;
while ((i < x.length-1) && (x[i] <= x[i+1])) // get x[m+1:r]
i++;
r = (i == x.length) ? i-1 : i; // if it's true, that means array x is
// already sorted, we only need to copy
// array x to array y
merge(x, y, l, m, r);
}
return (l == 0) && (m == x.length - 1); // it's true only when the whole
// array is already sorted
} public static void merge(int x[], int y[], int l, int m, int r) {
// merge x[l:m] and x[m+1:r] into y[l:r]
int i = l,
j = m+1,
k = l;
while ((i <= m) && (j <= r))
if (x[i] <= x[j])
y[k++] = x[i++];
else
y[k++] = x[j++];
while (k <= r)
if (i > m) // elements in x[l:m] are all merged into array y[]
y[k++] = x[j++];
else
y[k++] = x[i++]; }
}

After running each program for 3 times, I got the executing time as below:

program in textbook -- 1457ms 1389ms 1359ms

my program -- 1281ms 1172ms 1185ms

In average, my program saves roughly 0.2 second. Though it's not that better, it still makes me exciting!

And through this practice, I came to know there's a lot of fun hacking the algorithm. I'm looking forword to write more beautiful and efficient code!

Natural Merge Sort(自然归并排序)的更多相关文章

  1. 【算法】归并排序(Merge Sort)(五)

    归并排序(Merge Sort) 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序 ...

  2. 连续线性空间排序 起泡排序(bubble sort),归并排序(merge sort)

    连续线性空间排序 起泡排序(bubble sort),归并排序(merge sort) 1,起泡排序(bubble sort),大致有三种算法 基本版,全扫描. 提前终止版,如果发现前区里没有发生交换 ...

  3. [算法]——归并排序(Merge Sort)

    归并排序(Merge Sort)与快速排序思想类似:将待排序数据分成两部分,继续将两个子部分进行递归的归并排序:然后将已经有序的两个子部分进行合并,最终完成排序.其时间复杂度与快速排序均为O(nlog ...

  4. 归并排序(Merge Sort)

    归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序 ...

  5. 经典排序算法 - 归并排序Merge sort

    经典排序算法 - 归并排序Merge sort 原理,把原始数组分成若干子数组,对每个子数组进行排序, 继续把子数组与子数组合并,合并后仍然有序,直到所有合并完,形成有序的数组 举例 无序数组[6 2 ...

  6. 排序算法二:归并排序(Merge sort)

    归并排序(Merge sort)用到了分治思想,即分-治-合三步,算法平均时间复杂度是O(nlgn). (一)算法实现 private void merge_sort(int[] array, int ...

  7. 归并排序 ALDS1_5_B:Merge Sort

    Merge Sort Write a program of a Merge Sort algorithm implemented by the following pseudocode. You sh ...

  8. 【高级排序算法】2、归并排序法的实现-Merge Sort

    简单记录 - bobo老师的玩转算法系列–玩转算法 -高级排序算法 Merge Sort 归并排序 Java实现归并排序 SortTestHelper 排序测试辅助类 package algo; im ...

  9. 【高级排序算法】1、归并排序法 - Merge Sort

    归并排序法 - Merge Sort 文章目录 归并排序法 - Merge Sort nlogn 比 n^2 快多少? 归并排序设计思想 时间.空间复杂度 归并排序图解 归并排序描述 归并排序小结 参 ...

随机推荐

  1. [Python]Codecombat攻略之远边的森林Forest(1-40关)

    首页:https://cn.codecombat.com/play语言:Python 第二界面:远边的森林Forest(40关)时间:2-6小时内容:if/else.关系操作符.对象属性.处理输入网页 ...

  2. zeroc

    ZeroC ICE 是指ZeroC公司的ICE(Internet Communications Engine)中间件平台.对于客户端和服务端程序的开发提供了很大的便利. 目前ICE平台中包括Ice,I ...

  3. 【特效】jquery选项卡插件,页面多个选项卡统一调用

    把选项卡整合了一下,写成个插件,这样可以整个站,或整个页面有多个选项卡时,统一调用.代码的具体注意事项已经写进注释了.用于js获取元素的class名称必须有,选项卡本身的样式,另再取一个名字来设置(本 ...

  4. Table样式设置

    <table class="listTable"> <tr><th width="40px">序号</th>&l ...

  5. Xamarin Forms 进度条控件

    本文翻译:http://xamlnative.com/2016/04/14/xamarin-forms-a-simple-circular-progress-control/ 里面都是胡说的,如果看不 ...

  6. Ajax.Nodejs.跨域访问

    使用环境: 客户端: jQuery 服务器: Node.js 在通过Ajax调用非本域的链接/接口时, 一般是不能成功的, 就算是同一个IP下不同的端口也被认作跨域访问 解决办法记录如下: 客户端: ...

  7. Msys2配置总结

    一.MSYS2的MirrorList配置 1.修改msys2安装目录下的/etc/pacman.d文件夹里面的3个mirrorlist.*文件 [mirrorlist.mingw32] #中国科学技术 ...

  8. 点击下拉,其余不动的jquery事件(转)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. 路由知识 静态路由 rip eigrp ospf

    第1章 路由选择原理 1.1 几个概念 1.1.1 被动路由协议 用来在路由之间传递用户信息 1.1.2 主动路由协议 用于维护路由器的路由表 R2#show ip route Codes: C - ...

  10. Hadoop部署配置文件

    为了方便大家修,我把要修改的地方标红了,找到对应文件,复制粘贴过去就可以了 注:这个是我安装的Hadoop的配置,要根据我之前发的文章配置才行, 里面有一些东西比如文件夹名称,路径不一样,稍加修改也可 ...