Natural Merge Sort(自然归并排序)
This is a Natural Merge Sort program from my textbook. It works, but I don't think it's good.
// Natural merge sort program in the textbook
public class NaturalMergeSortProgram {
public static void main(String[] args)
{
int a[] = new int[10000000];
int b[] = new int[a.length];
for (int i = 0; i < a.length; i++)
a[i] = (int)(1+Math.random()*(1000-1+1));
long starTime=System.currentTimeMillis();
NaturalMergeSort(a, b);
long endTime=System.currentTimeMillis();
long Time = endTime - starTime;
System.out.println("executing time: "+Time+"(ms)");
/*for (int i = 0; i < b.length; i++)
{ if (i % 20 == 0)
System.out.println();
System.out.print(a[i]+" ");
}*/
}
public static void NaturalMergeSort(int a[], int b[])
{ // merge array a into b and then b into a until sorted
while (!MergeRuns(a, b) & !MergeRuns(b, a));
}
public static boolean MergeRuns(int a[], int b[])
{
int i = 0, k = 0;
int n = a.length;
boolean asc = true;
int x;
while (i < n)
{
k = i;
do
x = a[i++];
while (i < n && x <= a[i]); // elements are increasing
while (i < n && x >= a[i]) // elements are decreasing
x = a[i++];
merge(a, b, k , i-1, asc);
asc = !asc;
}
return k == 0;
}
public static void merge(int a[], int b[], int low, int high, boolean asc)
{ // merge a[low:high] into b[low:high]
int k = asc ? low : high;
int c = asc ? 1 : -1;
int i = low, j = high;
while (i <= j)
{
if (a[i] <= a[j])
b[k] = a[i++];
else
b[k] = a[j--];
k += c;
}
}
}
Or maybe I don't get it? Because it's rather obscure and lack of comments( these comments are all added by me).
So I decide to write my own Natural Merge Sort program:
// My own natural merge sort program
public class MyNaturalMergeSort { public static void main(String args[]) {
int a[] = new int[10000000];
int b[] = new int[a.length];
for (int i = 0; i < a.length; i++)
a[i] = (int)(1+Math.random()*(1000-1+1)); long starTime=System.currentTimeMillis();
while (!NaturalMergeSort(a, b) && !NaturalMergeSort(b, a));
long endTime=System.currentTimeMillis();
long Time = endTime - starTime;
System.out.println("executing time: "+Time+"(ms)");
for (int i = 0; i < 100; i++)
{ if (i % 20 == 0)
System.out.println();
System.out.print(a[9999*i]+" ");
}
System.out.println(a[a.length-1]);
} public static boolean NaturalMergeSort(int x[], int y[]) {
// find the two adjacent natural increasing arrays x[l:m] and x[m+1:r],
// then merge them into y[l:r] using function merge()
int i, l = 0, m = 0, r;
for (i = 0; i < x.length; i++)
{ l = i;
while ((i < x.length-1) && (x[i] <= x[i+1])) // get x[l:m]
i++;
m = i++;
while ((i < x.length-1) && (x[i] <= x[i+1])) // get x[m+1:r]
i++;
r = (i == x.length) ? i-1 : i; // if it's true, that means array x is
// already sorted, we only need to copy
// array x to array y
merge(x, y, l, m, r);
}
return (l == 0) && (m == x.length - 1); // it's true only when the whole
// array is already sorted
} public static void merge(int x[], int y[], int l, int m, int r) {
// merge x[l:m] and x[m+1:r] into y[l:r]
int i = l,
j = m+1,
k = l;
while ((i <= m) && (j <= r))
if (x[i] <= x[j])
y[k++] = x[i++];
else
y[k++] = x[j++];
while (k <= r)
if (i > m) // elements in x[l:m] are all merged into array y[]
y[k++] = x[j++];
else
y[k++] = x[i++]; }
}
After running each program for 3 times, I got the executing time as below:
program in textbook -- 1457ms 1389ms 1359ms
my program -- 1281ms 1172ms 1185ms
In average, my program saves roughly 0.2 second. Though it's not that better, it still makes me exciting!
And through this practice, I came to know there's a lot of fun hacking the algorithm. I'm looking forword to write more beautiful and efficient code!
Natural Merge Sort(自然归并排序)的更多相关文章
- 【算法】归并排序(Merge Sort)(五)
归并排序(Merge Sort) 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序 ...
- 连续线性空间排序 起泡排序(bubble sort),归并排序(merge sort)
连续线性空间排序 起泡排序(bubble sort),归并排序(merge sort) 1,起泡排序(bubble sort),大致有三种算法 基本版,全扫描. 提前终止版,如果发现前区里没有发生交换 ...
- [算法]——归并排序(Merge Sort)
归并排序(Merge Sort)与快速排序思想类似:将待排序数据分成两部分,继续将两个子部分进行递归的归并排序:然后将已经有序的两个子部分进行合并,最终完成排序.其时间复杂度与快速排序均为O(nlog ...
- 归并排序(Merge Sort)
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序 ...
- 经典排序算法 - 归并排序Merge sort
经典排序算法 - 归并排序Merge sort 原理,把原始数组分成若干子数组,对每个子数组进行排序, 继续把子数组与子数组合并,合并后仍然有序,直到所有合并完,形成有序的数组 举例 无序数组[6 2 ...
- 排序算法二:归并排序(Merge sort)
归并排序(Merge sort)用到了分治思想,即分-治-合三步,算法平均时间复杂度是O(nlgn). (一)算法实现 private void merge_sort(int[] array, int ...
- 归并排序 ALDS1_5_B:Merge Sort
Merge Sort Write a program of a Merge Sort algorithm implemented by the following pseudocode. You sh ...
- 【高级排序算法】2、归并排序法的实现-Merge Sort
简单记录 - bobo老师的玩转算法系列–玩转算法 -高级排序算法 Merge Sort 归并排序 Java实现归并排序 SortTestHelper 排序测试辅助类 package algo; im ...
- 【高级排序算法】1、归并排序法 - Merge Sort
归并排序法 - Merge Sort 文章目录 归并排序法 - Merge Sort nlogn 比 n^2 快多少? 归并排序设计思想 时间.空间复杂度 归并排序图解 归并排序描述 归并排序小结 参 ...
随机推荐
- dotweb框架之旅 [三] - 常用对象-HttpServer
dotweb属于一个Web框架,希望通过框架行为,帮助开发人员快速构建Web应用,提升开发效率,减少不必要的代码臃肿. dotweb包含以下几个常用对象: App(dotweb) App容器,为Web ...
- Emgu.CV(三)
像素交换 private void btn_Exchange_Click(object sender, EventArgs e) { if (imageBox1.Image != null) { va ...
- 图论 Warshall 和Floyd 矩阵传递闭包
首先我们先说下图论,一般图存储可以使用邻接矩阵,或邻接表,一般使用邻接矩阵在稠密图比较省空间. 我们来说下有向图,一般的有向图也是图,图可以分为稠密图,稀疏图,那么从意思上,稠密图就是点的边比较多,稀 ...
- Linux入门(10)——Ubuntu16.04使用pip3和pip安装numpy,scipy,matplotlib等第三方库
安装Python3第三方库numpy,scipy,matplotlib: sudo apt install python3-pip pip3 install numpy pip3 install sc ...
- 深入javascript之对象
前言 这是读书笔记第二篇,看完之后突然发现自己对js的内置的一些东西还是了解的不够全面,很多方法见都没见过,啥用都不知道,这是非常不可取的.码农好歹也得眼熟啊,晓都不晓得后面的学习还怎么进行下去... ...
- vue2.0 练习项目-外卖APP(1)
前言 vue这个框架现在挺流行的,作为一个专注前端100年的代码爱好者,学习下路径流行的框架是必须的!在网上搜索vue的项目是比较少的,在官网进行了入门学后,没有一个项目练习巩固下,学了就等于没学,所 ...
- MyBatis 原始Dao开发方式
原始Dao开发方法需要程序员编写Dao接口和Dao实现类. 映射文件 <?xml version="1.0" encoding="UTF-8" ?> ...
- 队列(存储结构数组)--Java实现
/*队列:其实也是一种操作受限的线性表 *特点:先进先出 *队尾指针:负责元素的进队 *队头指针:负责元素的出队 *注意:普通队--容易浪费空间,一般队列使用最多的就是循环队列--指针环绕 *队列的实 ...
- java笔记02
一,编写一个方法,使用以上算法生成指定数目(比如1000个)的随机整数 /** * */ package 课堂2; import java.util.Random; /** * @author 信16 ...
- LeetCode 606. Construct String from Binary Tree (建立一个二叉树的string)
You need to construct a string consists of parenthesis and integers from a binary tree with the preo ...