【深度学习系列】CNN模型的可视化
前面几篇文章讲到了卷积神经网络CNN,但是对于它在每一层提取到的特征以及训练的过程可能还是不太明白,所以这节主要通过模型的可视化来神经网络在每一层中是如何训练的。我们知道,神经网络本身包含了一系列特征提取器,理想的feature map应该是稀疏的以及包含典型的局部信息。通过模型可视化能有一些直观的认识并帮助我们调试模型,比如:feature map与原图很接近,说明它没有学到什么特征;或者它几乎是一个纯色的图,说明它太过稀疏,可能是我们feature map数太多了(feature_map数太多也反映了卷积核太小)。可视化有很多种,比如:feature map可视化、权重可视化等等,我以feature map可视化为例。
模型可视化
因为我没有搜到用paddlepaddle在imagenet 1000分类的数据集上预训练好的googLeNet inception v3,所以用了keras做实验,以下图作为输入:
- 输入图片
北汽绅宝D50:

- feature map可视化
取网络的前15层,每层取前3个feature map。
北汽绅宝D50 feature map:

从左往右看,可以看到整个特征提取的过程,有的分离背景、有的提取轮廓,有的提取色差,但也能发现10、11层中间两个feature map是纯色的,可能这一层feature map数有点多了,另外北汽绅宝D50的光晕对feature map中光晕的影响也能比较明显看到。
- Hypercolumns
通常我们把神经网络最后一个fc全连接层作为整个图片的特征表示,但是这一表示可能过于粗糙(从上面的feature map可视化也能看出来),没法精确描述局部空间上的特征,而网络的第一层空间特征又太过精确,缺乏语义信息(比如后面的色差、轮廓等),于是论文《Hypercolumns for Object Segmentation and Fine-grained Localization》提出一种新的特征表示方法:Hypercolumns——将一个像素的 hypercolumn 定义为所有 cnn 单元对应该像素位置的激活输出值组成的向量),比较好的tradeoff了前面两个问题,直观地看如图:

把北汽绅宝D50 第1、4、7层的feature map以及第1, 4, 7, 10, 11, 14, 17层的feature map分别做平均,可视化如下:

代码实践
# -*- coding: utf-8 -*-
from keras.applications import InceptionV3
from keras.applications.inception_v3 import preprocess_input
from keras.preprocessing import image
from keras.models import Model
from keras.applications.imagenet_utils import decode_predictions
import numpy as np
import cv2
from cv2 import *
import matplotlib.pyplot as plt
import scipy as sp
from scipy.misc import toimage def test_opencv():
# 加载摄像头
cam = VideoCapture(0) # 0 -> 摄像头序号,如果有两个三个四个摄像头,要调用哪一个数字往上加嘛
# 抓拍 5 张小图片
for x in range(0, 5):
s, img = cam.read()
if s:
imwrite("o-" + str(x) + ".jpg", img) def load_original(img_path):
# 把原始图片压缩为 299*299大小
im_original = cv2.resize(cv2.imread(img_path), (299, 299))
im_converted = cv2.cvtColor(im_original, cv2.COLOR_BGR2RGB)
plt.figure(0)
plt.subplot(211)
plt.imshow(im_converted)
return im_original def load_fine_tune_googlenet_v3(img):
# 加载fine-tuning googlenet v3模型,并做预测
model = InceptionV3(include_top=True, weights='imagenet')
model.summary()
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
print('Predicted:', decode_predictions(preds))
plt.subplot(212)
plt.plot(preds.ravel())
plt.show()
return model, x def extract_features(ins, layer_id, filters, layer_num):
'''
提取指定模型指定层指定数目的feature map并输出到一幅图上.
:param ins: 模型实例
:param layer_id: 提取指定层特征
:param filters: 每层提取的feature map数
:param layer_num: 一共提取多少层feature map
:return: None
'''
if len(ins) != 2:
print('parameter error:(model, instance)')
return None
model = ins[0]
x = ins[1]
if type(layer_id) == type(1):
model_extractfeatures = Model(input=model.input, output=model.get_layer(index=layer_id).output)
else:
model_extractfeatures = Model(input=model.input, output=model.get_layer(name=layer_id).output)
fc2_features = model_extractfeatures.predict(x)
if filters > len(fc2_features[0][0][0]):
print('layer number error.', len(fc2_features[0][0][0]),',',filters)
return None
for i in range(filters):
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
plt.subplot(filters, layer_num, layer_id + 1 + i * layer_num)
plt.axis("off")
if i < len(fc2_features[0][0][0]):
plt.imshow(fc2_features[0, :, :, i]) # 层数、模型、卷积核数
def extract_features_batch(layer_num, model, filters):
'''
批量提取特征
:param layer_num: 层数
:param model: 模型
:param filters: feature map数
:return: None
'''
plt.figure(figsize=(filters, layer_num))
plt.subplot(filters, layer_num, 1)
for i in range(layer_num):
extract_features(model, i, filters, layer_num)
plt.savefig('sample.jpg')
plt.show() def extract_features_with_layers(layers_extract):
'''
提取hypercolumn并可视化.
:param layers_extract: 指定层列表
:return: None
'''
hc = extract_hypercolumn(x[0], layers_extract, x[1])
ave = np.average(hc.transpose(1, 2, 0), axis=2)
plt.imshow(ave)
plt.show() def extract_hypercolumn(model, layer_indexes, instance):
'''
提取指定模型指定层的hypercolumn向量
:param model: 模型
:param layer_indexes: 层id
:param instance: 模型
:return:
'''
feature_maps = []
for i in layer_indexes:
feature_maps.append(Model(input=model.input, output=model.get_layer(index=i).output).predict(instance))
hypercolumns = []
for convmap in feature_maps:
for i in convmap[0][0][0]:
upscaled = sp.misc.imresize(convmap[0, :, :, i], size=(299, 299), mode="F", interp='bilinear')
hypercolumns.append(upscaled)
return np.asarray(hypercolumns) if __name__ == '__main__':
img_path = '~/auto1.jpg'
img = load_original(img_path)
x = load_fine_tune_googlenet_v3(img)
extract_features_batch(15, x, 3)
extract_features_with_layers([1, 4, 7])
extract_features_with_layers([1, 4, 7, 10, 11, 14, 17])
总结
还有一些网站做的关于CNN的可视化做的非常不错,譬如这个网站:http://shixialiu.com/publications/cnnvis/demo/,大家可以在训练的时候采取不同的卷积核尺寸和个数对照来看训练的中间过程。最近PaddlePaddle也开源了可视化工具VisaulDL,下篇文章我们讲讲paddlepaddle的visualDL和tesorflow的tensorboard。
【深度学习系列】CNN模型的可视化的更多相关文章
- 【深度学习系列3】 Mariana CNN并行框架与图像识别
[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框 ...
- 【深度学习系列】PaddlePaddle垃圾邮件处理实战(二)
PaddlePaddle垃圾邮件处理实战(二) 前文回顾 在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度 ...
- 深度学习系列 Part(3)
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网 ...
- 时间序列深度学习:seq2seq 模型预测太阳黑子
目录 时间序列深度学习:seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置.预处 ...
- 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】
转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...
- 【转】[caffe]深度学习之图像分类模型AlexNet解读
[caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097 本文章已收录于: ...
- 【深度学习系列2】Mariana DNN多GPU数据并行框架
[深度学习系列2]Mariana DNN多GPU数据并行框架 本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架. 深度神经网络( ...
- 【深度学习系列】关于PaddlePaddle的一些避“坑”技巧
最近除了工作以外,业余在参加Paddle的AI比赛,在用Paddle训练的过程中遇到了一些问题,并找到了解决方法,跟大家分享一下: PaddlePaddle的Anaconda的兼容问题 之前我是在服务 ...
- 基于TensorFlow的深度学习系列教程 2——常量Constant
前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图.本篇则着重介绍和整理下Constant相关的内容. 基于TensorFlow的深度学习系列教程 1--Hell ...
- 深度学习 vs. 概率图模型 vs. 逻辑学
深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器 ...
随机推荐
- php-自动过滤、自动填充、自动验证
最近又学到了一些新技巧,和大家分享下. 第一.当一个表单有很大内容时,我们在表单处理页面接收这些表单的值的时候就会重复 接收,于是就有了自动过滤的解决之法(核心就是把数据表里需要的字段接收) 首先:我 ...
- 为什么硬链接不能链接目录、文件inode 和目录 dentry 的区别联系
我们对任何一个目录用ls -l 命令都可以看到其连接数至少是2,这也说明了系统中是存在硬连接的,而且命令ln -d 也可以让超级用户对目录作硬连接,这些都说明了系统限制对目录进行硬连接只是一个硬性规定 ...
- HTTPS从认识到线上实战全记录
前言 关于HTTPS,基本上你想知道的都在这里了.本文原标题<HTTPS原理与实践>,下图是本文配套PPT的目录截图: [TOC] 原理篇 认识HTTPS 先说一下,本文可能有些地方由于描 ...
- mysql 编写存储过程
先看例子: 1.delimiter $$2.drop procedure if exists`test_procedure` $$3.create procedure test_procedure(I ...
- S2 深入.NET和C#编程 一: 深入C#.NET框架
深入C#.NET框架 1..NET框架 之一 推荐一个代码管理平台,博客发布平台 git 之前的复习: 学习的网站: git github.com 2.类和对象的关系 Dept de ...
- Shell脚本实现文件遍历和删除操作
本文需要实现的功能如下:某文件夹下具有由按数字编号命名的文件夹,需要删除除最大编码外的文件. 具体实现 大致思路:循环遍历该文件夹下所有文件,正则匹配出最大编码文件:然后循环文件,删除除最大编码外的文 ...
- Mongodb集群【三】
Mongodb常用三种集群 1 主从(Master/Slave) 不推荐,但是mongodb依然保留有.一主多从,不支持链式结构.简单主从,没有裁仲者不能自动恢复. 2 副本集(Relica Set) ...
- Wechat 微信端正确播放audio、video的姿势
在开发微信项目时,有在项目中播放音频(audio)和视频(video)的需求: 在开发中,我们会遇到的问题 audio.video在Android和IOS系统上的兼容性: video播放完成后,跳出浏 ...
- [Spark SQL] SparkSession、DataFrame 和 DataSet 练习
本課主題 DataSet 实战 DataSet 实战 SparkSession 是 SparkSQL 的入口,然后可以基于 sparkSession 来获取或者是读取源数据来生存 DataFrameR ...
- python爬虫入门-开发环境与小例子
python爬虫入门 开发环境 ubuntu 16.04 sublime pycharm requests库 requests库安装: sudo pip install requests 第一个例子 ...