适用场合

Apriori算法包含两部分内容:1,发现频繁项集 2,挖掘关联规则。

通俗地解释一下,就是这个意思:1.发现哪些项目常常同时出现 2.挖掘这些常常出现的项目是否存在“如果A那么B”的关系。

举个例子:网店购物订单常常会出现这样一种情况:那就是某几种物品常常一起买。比如锅和铲子、手机和手机壳等就会常常出现在同一个订单中,因此挖掘出哪些项目常常同时出现就是1中的问题。再进一步,对于这些常常出现的频繁项集,如果能挖掘出“若A则B”的更强关系,那就更好了。比如买了手机的常常会再买个手机壳,但是反过来不成立。

发现频繁项集

发现频繁项集最直观的想法,就是想办法对所有的项目进行全组合,也就是产生2n种,然后对这些不同的种类挨个计算出现最频繁的组合。但是这种方法的搜索空间太大,速度非常慢。Apriori定理可以很大程度上缩小搜索空间,其内容是:任一频繁项集的所有非空子集也必须是频繁的,也就是说,任何一个非频繁项集的超集一定也是非频繁项集。这样就可以直接删除所有包含非频繁项集的集合,很大程度上减少了搜索空间。

转载了一张图,非常明晰地说明了其中的道理:

(图片来源:http://www.jianshu.com/p/00103435ef89)

挖掘关联规则

挖掘关联规则是以频繁项集为基础的。假设我们已经找到了几个频繁项集,现在要找到其中是否蕴含“若A则B”的因果关系。

要想计算是否存在因果关系,很直观的想法就是计算条件概率P(B|A),看看在A条件下B的概率是否足够高。

术语

假设项集有A,B。

有了上述的铺垫,现在引入术语定义:

支持度(support):P(AB),A和B同时出现概率。越大越频繁。

置信度(confidence):P(B|A),条件概率。越大说明因果越强。

提升度(lift):P(B|A)/P(B),有A这个条件和没有A这个条件时,B出现的概率之比。

实现

[机器学习] Apriori算法的更多相关文章

  1. 机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(associat ...

  2. Python两步实现关联规则Apriori算法,参考机器学习实战,包括频繁项集的构建以及关联规则的挖掘

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  3. 机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析

    机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...

  4. 【机器学习实战】第11章 使用 Apriori 算法进行关联分析

    第 11 章 使用 Apriori 算法进行关联分析 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务. 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出 ...

  5. 【机器学习】Apriori算法——原理及代码实现(Python版)

    Apriopri算法 Apriori算法在数据挖掘中应用较为广泛,常用来挖掘属性与结果之间的相关程度.对于这种寻找数据内部关联关系的做法,我们称之为:关联分析或者关联规则学习.而Apriori算法就是 ...

  6. 机器学习——使用Apriori算法进行关联分析

    从大规模的数据集中寻找隐含关系被称作为关联分析(association analysis)或者关联规则学习(association rule learning). Apriori算法 优点:易编码实现 ...

  7. 机器学习(八)—Apriori算法

    摘要:本文对Apriori算法进行了简单介绍,并通过Python进行实现,进而结合UCI数据库中的肋形蘑菇数据集对算法进行验证. “啤酒与尿布”的例子相信很多人都听说过吧,故事是这样的:在一家超市中, ...

  8. 《机器学习实战》学习笔记第十一章 —— Apriori算法

    主要内容: 一.关联分析 二.Apriori原理 三.使用Apriori算法生成频繁项集 四.从频繁项集中生成关联规则 一.关联分析 1.关联分析是一种在大规模数据集中寻找有趣关系的任务.这些关系可以 ...

  9. 机器学习(十五)— Apriori算法、FP Growth算法

    1.Apriori算法 Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策. Apriori算法采用了迭代的方法,先搜 ...

随机推荐

  1. tab切换实现方式2

    tab切换实现方式2: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  2. Ionic 应用图标,信息修改

    Ionic 应用图标,信息修改 Ionic 应用图标 修改 准备好替换的图标并生成各个尺寸的图标 1.使用命令行进入项目根目录,执行命令ionic resources 替换的图片放在resources ...

  3. VMware中Mac OS中显示共享文件夹的方法

    在finder 偏好设置里的通用标签下,勾选  “已连接的服务器”

  4. WebAssembly:随风潜入夜

    What? WebAssembly 是一种二进制格式的类汇编代码,可以被浏览器加载和并进一步编译成可执行的机器码,从而在客户端运行.它还可以作为高级语言的编译目标,理论上任何语言都可以编译为 WebA ...

  5. 我的学习之路_第二十五_javaScript

    Javascript 作用:可以对表单数据进行校验,可以对页面实现一些动态效果 定义: JavaScript一种直译式脚本语言,是一种动态类型.弱类型.基于原型的语言,内置支持类型. 它的解释器被称为 ...

  6. vsftpd配置虚拟用户

    #安装vsftpd yum -y install vsftpd #创建本地ftp账户 groupadd ftpuser useradd -g ftpuser -s /sbin/nologin ftpu ...

  7. js-txt文本处理

    js-txt文本处理 写自己主页项目时所产生的小问题拿出来给大家分享分享,以此共勉. ---DanlV TextArea的换行符处理 TextArea文本转换为Html:写入数据库时使用 js获取了t ...

  8. HttpClient以json形式的参数调用http接口并对返回的json数据进行处理(可以带文件)

    1.参数的url就是被调用的地址,map是你要传的参数.参数转成json我使用的是gson方式转换的. 主要使用的jar包有httpclient-4.5.3.jar.httpcore-4.4.6.ja ...

  9. Oracle存储过程、包、方法使用总结

    /** *@author:zhengwei *@date:2017-04-28 *@desc:存储过程用法总结 */ CREATE OR REPLACE PROCEDURE MYPROCEDURE(P ...

  10. easyui点击搜索的时候获取不要文本框里面的值的问题

    jsp的代码 <div id="tb"> <input id="AppID" placeholder="请根据申请人ID搜索&quo ...