高性能队列Disruptor系列1--传统队列的不足
在前一篇文章Java中的阻塞队列(BlockingQueue)中介绍了Java中的阻塞队列。从性能上我们能得出一个结论:数组优于链表,CAS优于锁。那么有没有一种队列,通过数组的方式实现,而且采用无锁的结构?嗯,那就是Disruptor,而且比想象中更为强大。
1. 无处不在的锁
Java中的阻塞队列采用锁来实现对临界区资源的同步访问,保证操作的线程安全。
在上一篇文章中我们知道ArrayBlockingQueue通过ReentrantLock以及它的两个condition来控制并发:
final ReentrantLock lock;
private final Condition notEmpty;
private final Condition notFull;
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
比如在压入元素的时候:
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
enqueue(e);
} finally {
lock.unlock();
}
}
如果数组已满,则等待notfull,在enqueue中如果消费者去除元素,则会调用notFull.signal(),put方法将会被唤醒。
这种wait-notify模式很好的实现了阻塞队列。
但是在性能上因为锁的缘故,会有额外的性能消耗。
2. 无声的伪共享
从计算机的存储结构说起,在CPU和主存之间插入一个更小、更快的存储设备(例如,高速缓存存储器)已成为存储设备的一个设计主流,在计算机系统中,存储设备被组织成一个存储器层次模型,如下图(来自《深入理解计算机系统》),在此层次中,从上至下,容量越来越大,访问速度越来越慢,但是造价也更便宜。
下图是简化版的多核计算机基本结构,当CPU执行运算的时候,先去L1查找所需要的数据源,再去L2,如果这些缓存中都没有,所需的数据就得去主存中拿。
下面是Martin 和 Mike的 QCon presentation 演讲中给出了一些缓存未命中的消耗数据:

今天的CPU不再是按字节访问内存,而是以64字节(64位系统)为单位的块(chunk)拿取,称为一个缓存行(cache line)。当你读一个特定的内存地址,整个缓存行将从主存换入缓存,并且访问同一个缓存行内的其它值的开销是很小的。
比如,Java中的long类型是8个字节,因此在一个缓冲行中可以存8个long类型的变量,也就是说如果访问一个long类型的数组,访问第一个元素的时候,会把另外7个也加载到缓存中,可以非常快速的遍历数组,这也是数组比链表快的原因。
美团点评技术团队写了测试程序,利用一个long型的二维数组,测试cache line的特性的效果:
public class CacheLineEffect {
//考虑一般缓存行大小是64字节,一个 long 类型占8字节
static long[][] arr;
public static void main(String[] args) {
arr = new long[1024 * 1024][];
for (int i = 0; i < 1024 * 1024; i++) {
arr[i] = new long[8];
for (int j = 0; j < 8; j++) {
arr[i][j] = 0L;
}
}
long sum = 0L;
long marked = System.currentTimeMillis();
for (int i = 0; i < 1024 * 1024; i+=1) {
for(int j =0; j< 8;j++){
sum = arr[i][j];
}
}
System.out.println("Loop times:" + (System.currentTimeMillis() - marked) + "ms");
marked = System.currentTimeMillis();
for (int i = 0; i < 8; i+=1) {
for(int j =0; j< 1024 * 1024;j++){
sum = arr[j][i];
}
}
System.out.println("Loop times:" + (System.currentTimeMillis() - marked) + "ms");
}
}
运行结果:
Loop times:24ms
Loop times:97ms
缓存行利用局部性的确能提高效率,但是有一个弊端,当我们的数据不相关,只是一个单独的变量,这两个数据在一个缓存行中,而且他们的访问频率都很高,这时候反而会影响效率。如下图:
比如我们有一个类存放了两个变量的值data1,data2。当加载data1的时候,data2也被加载到缓存中,也就是存在于同一个缓存行。当core1改变data1的值的时候,core1缓存中的值和内存中的值都被改变了,这时候core2也会重新加载这个缓存行,因为data1变了,而core2只是想读取自己缓存中的data2,却任然要等从内存中重新加载这个缓存行。
这种无法充分使用缓存行特性的现象,称为伪共享。
3. 总结
无论是锁还是伪共享,都对我们程序的性能产生了或多或少的影响,而Disruptor很好的解决了这些问题,采用了无锁的数据结构,而且利用 cache line padding(缓存行填充)很好的解决了伪共享问题。
引用范仲淹在infoq接受采访时的语录:
我个人的观点,就看你对性能的要求有多高。如果你要达到极致的性能,对延迟要求非常低,而且对高并发要求性能非常高的时候,你肯定要选择Disruptor。但是从易用性上来讲,Disruptor使用起来并没有传统的queue使用上更方便。你在百万级别并发的时候,我推荐大家使用Java的ConcurrentQueue跟BlockingQueue。但是如果你需要更低的延迟的话,我推荐用Disruptor。
参考资料:
高性能队列Disruptor系列1--传统队列的不足的更多相关文章
- 高性能队列Disruptor系列2--浅析Disruptor
1. Disruptor简单介绍 Disruptor是一个由LMAX开源的Java并发框架.LMAX是一种新型零售金融交易平台,这个系统是建立在 JVM 平台上,核心是一个业务逻辑处理器,它能够在一个 ...
- 高性能队列Disruptor系列3--Disruptor的简单使用(译)
简单用法 下面以一个简单的例子来看看Disruptor的用法:生产者发送一个long型的消息,消费者接收消息并打印出来. 首先,我们定义一个Event: public class LongEvent ...
- 高性能队列Disruptor的使用
一.什么是 Disruptor 从功能上来看,Disruptor 是实现了"队列"的功能,而且是一个有界队列.那么它的应用场景自然就是"生产者-消费者"模型的应 ...
- 高性能无锁队列 Disruptor 初体验
原文地址: haifeiWu和他朋友们的博客 博客地址:www.hchstudio.cn 欢迎转载,转载请注明作者及出处,谢谢! 最近一直在研究队列的一些问题,今天楼主要分享一个高性能的队列 Disr ...
- JUC并发编程与高性能内存队列disruptor实战-上
JUC并发实战 Synchonized与Lock 区别 Synchronized是Java的关键字,由JVM层面实现的,Lock是一个接口,有实现类,由JDK实现. Synchronized无法获取锁 ...
- Java队列——Disruptor 的使用
.什么是 Disruptor 从功能上来看,Disruptor 是实现了“队列”的功能,而且是一个有界队列.那么它的应用场景自然就是“生产者-消费者”模型的应用场合了. 可以拿 JDK 的 Bloc ...
- Azure Messaging-ServiceBus Messaging消息队列技术系列3-消息顺序保证
上一篇:Window Azure ServiceBus Messaging消息队列技术系列2-编程SDK入门 http://www.cnblogs.com/tianqing/p/5944573.ht ...
- Azure Messaging-ServiceBus Messaging消息队列技术系列4-复杂对象消息是否需要支持序列化和消息持久化
在上一篇中,我们介绍了消息的顺序收发保证: Azure Messaging-ServiceBus Messaging消息队列技术系列3-消息顺序保证 在本文中我们主要介绍下复杂对象消息是否需要支持序列 ...
- Azure Messaging-ServiceBus Messaging消息队列技术系列5-重复消息:at-least-once at-most-once
上篇博客中,我们用实际的业务场景和代码示例了Azure Messaging-ServiceBus Messaging对复杂对象消息的支持和消息的持久化: Azure Messaging-Service ...
随机推荐
- 设备offline时如何自动重置
在linux底层 Linux/include/uapi/linux/usbdevice_fs.h中,重置_IO('U', 20)可以重置usb设备. 因此,我们可以在脚本中利用这个方法去重置USB 代 ...
- git提交如何忽略某些文件
在使用git对项目进行版本管理的时候,我们总有一些不需要提交到版本库里的文件和文件夹,这个时候我们就需要让git自动忽略掉一下文件. 使用.gitignore忽略文件 为了让git忽略指定的文件和文件 ...
- margin重叠
margin重叠也就是我们常说的CSS 外边距合并,W3C给出如下定义: 外边距合并指的是,当两个垂直外边距相遇时,它们将形成一个外边距. 合并后的外边距的高度等于两个发生合并的外边距的高度中的较大者 ...
- Less和Sass的使用
[Less中的变量] 1.声明变量:@变量名:变量值; 使用变量:@变量名 @length:100px; @color:yellow; @opa:0.5; >>>Less中变量的类 ...
- 纯净CentOS7.2 yum源配置与使用yum 安装系统工具net-tools
本节我们来讲CentOS 的yum 源配置 一.yum 简介 yum,是Yellow dog Updater, Modified 的简称,是杜克大学为了提高RPM 软件包安装性而开发的一种软件包管理器 ...
- poj3020二分图匹配
The Global Aerial Research Centre has been allotted the task of building the fifth generation of mob ...
- myeclipse/eclipse 配置SSM框架错误之一解决方法
报错如下: 1. [org.springframework.web.context.ContextLoader] - Root WebApplicationContext: initializatio ...
- Spring Boot 学习笔记
参考资料 http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/ Spring Boot简介 Spring Boot使 ...
- CSS之定位布局(position,定位布局技巧)
css之定位 1.什么是定位:css中的position属性,position有四个值:absolute/relative/fixed/static(绝对/相对/固定/静态(默认))通过定位属性可以设 ...
- Python基本语法--语句
# -*- coding: utf-8 -*- #条件语句 ''' if 判断条件: 执行语句…… else: 执行语句…… ''' flag = False name = 'python' if n ...