GBDT (Gradient Boosting Decision Tree)属于集成学习中的Boosting流派,迭代地训练基学习器 (base learner),当前基学习器依赖于上一轮基学习器的学习结果。 不同于AdaBoost自适应地调整样本的权值分布,GBDT是通过不断地拟合残差 (residual)来“纠错”基学习器的。

1. Gradient Boosting

Gradient Boosting Machine (GBM) 是由大牛Friedman [1,2] 提出来,基本思想非常简单:基学习器存在着分类/回归错误的情况,在下一轮基学习器学习时努力地纠正这个错误。在回归问题中,这个错误被称为残差。比如,在学习样本\((x, y)\)得到一个模型\(f\),预测值为\(\hat{y} = f(x)\);那么残差则为:

\[
y - \hat{y} = y- f(x)
\]

如果定义损失函数为平方损失\(\frac{1}{2}(y-f(x))^2\),那么其梯度为

\[
\frac{\partial \frac{1}{2}(y-f(x))^2}{\partial f(x)} = f(x) - y
\]

可以发现:残差为负梯度方向。对于平方损失,每一步优化是很简单的;但是,对于其他损失函数呢?Friedman利用负梯度近似残差,将Gradient Boosting推广到一般损失函数\(L(y, x)\)。步骤如下:

  1. 计算伪残差 (pseudo-residual),

\[
r_{im} = - \left[ \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right]_{f = f_{m-1}}
\]

  1. 基学习器\(h_m(x)\)拟合样本\(\{ (x_i, r_{im}) \}\);
  2. 计算最优乘子 (multiplier) \(\gamma_m\),使得

\[
\gamma_m = \mathop{\arg \min} \limits_{\gamma} \sum_{i} L(y_i, f_{m-1}(x) + \gamma h_m(x_i))
\]

  1. 更新模型

\begin{equation}
f_m(x) = f_{m-1}(x) + \gamma_m h_m(x)
\label{eq:update}
\end{equation}

如此迭代,直至结束或模型收敛;最后一步得到的模型\(f_M(x)\)即为GBM的最终模型。

2. GBDT

如果基学习器为决策树时,GBM则被称为GBDT。决策树本质上是对特征空间的划分\(\{ R_{jm} \}\),因此基学习器\(h_m(x)\)可改写为
\[
h_m(x) = \sum_j b_{jm} I(x \in R_{jm})
\]
其中,\(b_{jm}\)为预测值,\(I(.)\)为指示函数。那么,式子\eqref{eq:update}可以改写为
\[
f_m(x) = f_{m-1}(x) + \sum_j \gamma_{jm} I(x \in R_{jm})
\]
GBDT的算法步骤如下图所示(图片来自于 ESL [3]):

为了减小过拟合,通过Shrinkage的方式:

\[
f_m(x) = f_{m-1}(x) + \upsilon \cdot \gamma_m h_m(x)
\]

其中,\(\upsilon\)称之为学习率 (learning rate)。经验表明,当学习率\(\upsilon < 0.1\)时,泛化能力远远超过没有Shrinkage的模型(即\(\upsilon =1\))。但是,低学习率同时也带来了更多的迭代次数。

3. 参考资料

[1] Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." Annals of statistics (2001): 1189-1232.
[2] Friedman, Jerome H. "Stochastic gradient boosting." Computational Statistics & Data Analysis 38.4 (2002): 367-378.
[3] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Springer, Berlin: Springer series in statistics, 2009.
[4] Cheng Li, A Gentle Introduction to Gradient Boosting.

Boosting决策树:GBDT的更多相关文章

  1. 随机森林(Random Forest),决策树,bagging, boosting(Adaptive Boosting,GBDT)

    http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 ...

  2. 机器学习之梯度提升决策树GBDT

    集成学习总结 简单易学的机器学习算法——梯度提升决策树GBDT GBDT(Gradient Boosting Decision Tree) Boosted Tree:一篇很有见识的文章 https:/ ...

  3. Ensemble Learning 之 Gradient Boosting 与 GBDT

    之前一篇写了关于基于权重的 Boosting 方法 Adaboost,本文主要讲述 Boosting 的另一种形式 Gradient Boosting ,在 Adaboost 中样本权重随着分类正确与 ...

  4. [机器学习]梯度提升决策树--GBDT

    概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由 ...

  5. Boosting算法总结(ada boosting、GBDT、XGBoost)

    把之前学习xgb过程中查找的资料整理分享出来,方便有需要的朋友查看,求大家点赞支持,哈哈哈 作者:tangg, qq:577305810 一.Boosting算法 boosting算法有许多种具体算法 ...

  6. 梯度提升决策树(GBDT)

    1.提升树 以决策树为基函数的提升方法称为提升树.决策树可以分为分类树和回归树.提升树模型可以表示为决策树的加法模型. 针对不同的问题的提升术算法的主要区别就是损失函数的不同,对于回归问题我们选用平方 ...

  7. Bagging和Boosting 概念及区别

    Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法.即将弱分类器组装成强分类器的方法. 首先介绍Boot ...

  8. Bagging和Boosting的区别

    转:http://www.cnblogs.com/liuwu265/p/4690486.html Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的 ...

  9. Boosting和Bagging的异同

    二者都是集成学习算法,都是将多个弱学习器组合成强学习器的方法. 1.Bagging (主要关注降低方差) Bagging即套袋法,其算法过程如下: A)从原始样本集中抽取训练集.每轮从原始样本集中使用 ...

随机推荐

  1. 由if-else,switch代替方案引起的思考

    关键词:条件判断,多态,策略模式,哈希表,字典map 笔者在用python实现事件驱动后,发现python是没有提供switch语句,python官方推荐多用字典来代替switch来实现,这让我就觉得 ...

  2. dubbo+zipkin调用链监控

    分布式环境下,对于线上出现问题往往比单体应用要复杂的多,原因是前端的一个请求可能对应后端多个系统的多个请求,错综复杂. 对于快速问题定位,我们一般希望是这样的: 从下到下关键节点的日志,入参,出差,异 ...

  3. 用 parseInt()解决的 小 bug

    在做轮播模块的时候遇到问题是:你在 连续指示小按钮 时候再去 只有 点击 下一张按钮,出现bug: 指示小按钮的 className 当前显示的 calssName 为 undefined ! // ...

  4. websocket技术分享

    开发环境: spring3+tomcat7+spring-websocket4 运行环境: windows.Linux 一.背景: 产品将要发布的消息或其他需要让客户提前知道的消息,在客户端和服务端建 ...

  5. AngularJS的过滤器$filter

    过滤器(filter)主要用于数据的格式上,通过某个规则,把值处理后返回结果.例如获得数据集,可排序后再返回. ng内置的共有九种过滤器: currency 货币 使用currency可以将数字格式化 ...

  6. vue2-loading-bar 一款基于Vue2的进度条插件

    自学了N久vue,奈何没有练手项目,终于决心拿个东西来试试手.基于对音乐的热爱,选择的第一个demo是音乐播放器.一般播放器都有进度条,于是无意间找到这个插件,就是vue2-loading-bar,这 ...

  7. 第一次在gitHub上传项目到git.oschina的方法

    首先在Git@osChina创建一个项目仓库 1.创建sshKey公钥 ssh-keygen -t rsa -C "ty635725964@qq.com" 之后连续三个空格,默认无 ...

  8. DELL Precision Tower7910重装系统+开机出现GRUB界面如何处理

    想给实验室的工作站重新装个Win7系统,因为以前并没装过工作站的系统,发现和普通的电脑装系统还是有些不一样的.主要的问题就在于主板的不同. 尝试了老毛桃U盘启动盘安装,结果在WinPE里面提示找不到硬 ...

  9. [ext4]01 磁盘布局 - block分析

    ext4文件系统最基本的分配单元是"block"(块). block是由一组连续的sectors来组成,其大小介于1k~4K之间,当然不可能是任意值,只能是2的整数次幂个secto ...

  10. [工具技巧] SecureCRT使用技巧 V1.0

    本文档适用对象为需要使用secureCRT做系统或网络等调试的工程师,其必须有用过该款软件,基础功能会使用.对于那些需要修改大量设备的配置时像远程升级等等,更应该学习本文档. 1       Secu ...