Making the Grade (bzoj1592)
题目描述
输入
输出
样例输入
7
1
3
2
4
5
3
9
样例输出
3
提示
FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列 1,2,2,4,5,5,9。
题解
考试的时候看到最小费用,想跑一跑网络流试试。折腾了半天没建出来图,也想不到什么数据结构。dp呢,状态显然需要二维来表示,第二维要开到5*10^8?不可想象。于是乎到最后连个暴力做法都没想出来,直接不顾一切地从头到尾补齐,因为数据过水居然水了40分= =。
正解是离散之后跑二维dp。在我的概念里离散只能用于只和值的大小关系而不和值本身有关的题,没想到还有这种用法。离散后的大小序号用于表示dp的第二维,这样数组只用开到2000*2000,而求值则用第二维序号对应的准确值和原高度作差。虽然经过了离散化,原值并没有被放弃,这样的思路十分新奇。f[i][j]表示第i位高度为第j大需要的最小费用,
状态转移方程为f[i][j]=min{f[i-1][k]}+abs(g[j]-a[i]) 1<=k<=J(非下降),g[i]表示经过去重后第i大的原高度。这里的min{f[i-1][k]}只要用一个变量来维护,初值为f[i-1][1],在转移的过程中同时进行比较即可。非上升则只是从后向前转移,min初始值为f[i+1][1]。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int sj=;
int n,h[sj],l[sj],temp,mi,f[sj][sj],jg;
struct W
{
int hi,num,xu;
}w[sj];
int comp(const W&a,const W&b)
{
return a.hi<b.hi;
}
void init()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&h[i]);
w[i].hi=h[i];
w[i].num=i;
}
sort(w+,w+n+,comp);
w[].xu=;
l[w[].xu]=w[].hi;
temp=;
for(int i=;i<=n;i++)
{
if(w[i].hi>w[i-].hi) temp++;
w[i].xu=temp;
l[w[i].xu]=w[i].hi;
}
}
int bj(int x,int y)
{
return x<y?x:y;
}
int main()
{
init();
for(int i=;i<=n;i++)
{
mi=f[i-][];
for(int j=;j<=temp;j++)
{
mi=bj(f[i-][j],mi);
f[i][j]=mi+abs(l[j]-h[i]);
}
}
jg=0x7fffffff;
for(int j=;j<=temp;j++)
jg=bj(f[n][j],jg);
memset(f,,sizeof(f));
for(int i=n;i>=;i--)
{
mi=f[i+][];
for(int j=;j<=temp;j++)
{
mi=bj(f[i+][j],mi);
f[i][j]=mi+abs(l[j]-h[i]);
}
}
for(int j=;j<=temp;j++)
jg=bj(f[][j],jg);
printf("%d",jg);
return ;
}
grading
Making the Grade (bzoj1592)的更多相关文章
- Making the Grade (bzoj1592)题解
问题 A: Making the Grade (bzoj1592) 时间限制: 1 Sec 内存限制: 128 MB 题目描述 FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求 ...
- [bzoj1592] Making the Grade
[bzoj1592] Making the Grade 题目 FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能 ...
- [bzoj1592][Usaco09Feb]Making the Grade 路面修整_动态规划
Making the Grade 路面修整 bzoj-1592 题目大意:给你n段路,每段路有一个高度h[i],将h[i]修改成h[i]$\pm\delta$的代价为$\delta$,求将这n段路修成 ...
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
- 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整
贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...
- 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...
- [BZOJ1592] [Usaco2008 Feb]Making the Grade 路面修整(DP)
传送门 有个结论,每一个位置修改高度后的数,一定是原来在这个数列中出现过的数 因为最终结果要么不递增要么不递减, 不递增的话, 如果x1 >= x2那么不用动,如果x1 < x2,把x1变 ...
- BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整
n<=2000个数,把它修改成不上升或不下降序列所要改变的数值总共最小是多少yy一下可得最后改成的数值肯定是原数组数值中的某一个感觉一下,相邻两个数如果有冲突要改,那肯定把他们改成两者之一的数才 ...
随机推荐
- docker registry私有仓库部署
私有仓库服务端:12.40[root@centos7_golang ~]# docker run -d -p 5000:5000 -v /opt/data/registry:/tmp/registry ...
- flask笔记二
web表单 web表单是浏览者和网之间的一个互动平台,完成浏览器和服务器之间的数据交互. 1.用Flask-WTF来处理表单 (1)在根目录下编辑扩展配置--config.py CSRF_ENABLE ...
- 浅谈js中的正则表达式
很多时候多会被正则表达式搞的晕头转向,最近抽出时间对正则表达式进行了系统的学习,整理如下: 正则表达式的创建 两种方法,一种是直接写,由包含在斜杠之间的模式组成:另一种是调用RegExp对象的构造函数 ...
- Normalize.css源码注释翻译&浏览器css兼容问题的理解
版本v5.0.0源码地址: https://necolas.github.io/normalize.css/5.0.0/normalize.css 翻译版: /*! normalize.css v5. ...
- js传宗接代---继承
前几天重温了一下js的继承,今天分享给大家: 一,类式继承. 所谓的类式继承就是:第二个类的原型prototype被赋予了第一个类的实例,如subcals.prototype=new supercls ...
- Mybatis传参方式
Mybatis传多个参数(三种解决方案) 据我目前接触到的传多个参数的方案有三种. 第一种方案 DAO层的函数方法 ? 1 Public User selectUser(String name,St ...
- iOS多线程开发之GCD(中篇)
前文回顾: 上篇博客讲到GCD的实现是由队列和任务两部分组成,其中获取队列的方式有两种,第一种是通过GCD的API的dispatch_queue_create函数生成Dispatch Queue:第二 ...
- 浅析CQRS的应用部署
CQRS,中文翻译命令和查询职责分离,它是一种架构,不仅可以从数据库层面实现读写分离,在代码层面上也是推荐读写分离的.在接口上可以更为简单 命令端定义 ICommandResult Execute(I ...
- 虚拟硬盘格式vdi、vhd、vmdk相互转换
Windows7的引导程序能够引导vhd格式的虚拟硬盘,而VirtualBox创建的虚拟硬盘文件是vdi格式的,怎么办呢? 以前要借助其他软件才能实现,但是VirtualBox早就悄悄为我们带来了一个 ...
- 优化js脚本设计,防止浏览器假死
在Web开发的时候经常会遇到浏览器不响应事件进入假死状态,甚至弹出"脚本运行时间过长"的提示框,如果出现这种情况说明你的脚本已经失控了,必须进行优化. 为什么会出现这种情况呢,我们 ...