Sum It Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6581    Accepted Submission(s): 3451

Problem Description
Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.
 
Input
The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.
 
Output
For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.
 
Sample Input
4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0
 
Sample Output
Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

 /*
     Name: hdu--1258--Sum It Up
     Copyright: ©2017 日天大帝
     Author: 日天大帝
     Date: 29/04/17 18:48
     Description: dfs,C++map水过
 */
 #include<iostream>
 #include<cstring>
 #include<map>
 using namespace std;
 void dfs(int,int,map<int,int,greater<int>>::iterator it);
 ;
 int res[MAX];
 int n,t,flag;
 map<int,int,greater<int>> mymap;
 int main(){
     ios::sync_with_stdio(false);

     while(cin>>n>>t,n||t){
         mymap.clear();
         flag = ;
         memset(res,,sizeof(res));
         ; i<t; ++i){
             int a;cin>>a;
             mymap[a]++;
         }
         cout<<"Sums of "<<n<<":"<<endl;
         dfs(,,mymap.begin());
         )cout<<"NONE"<<endl;
     }
     ;
 }
 void dfs(int sum,int ct,map<int,int,greater<int>>::iterator iter){
     if(sum == n){
         flag = ;
         cout<<res[];
         ; i<ct; ++i){
             cout<<"+"<<res[i];
         }
         cout<<endl;
     }
     for(auto it=iter; it!=mymap.end(); ++it){
         )continue;
         ; i--){
             if(sum+(i*it->first) > n)continue;
             ; k<i; ++k){
                 res[ct + k] = it->first;
             }
             auto ipoint = it;
             dfs(sum+(i*it->first),ct+i,++ipoint);
         }
     }
 }

hdu--1258--Sum It Up(Map水过)的更多相关文章

  1. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  2. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  3. hdu 1258 Sum It Up (dfs+路径记录)

    pid=1258">Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  4. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  5. HDU 1258 Sum It Up(DFS)

    题目链接 Problem Description Given a specified total t and a list of n integers, find all distinct sums ...

  6. HDU 1258 Sum It Up

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  7. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

  8. HDU 4432 Sum of divisors (水题,进制转换)

    题意:给定 n,m,把 n 的所有因数转 m 进制,再把各都平方,求和. 析:按它的要求做就好,注意的是,是因数,不可能有重复的...比如4的因数只有一个2,还有就是输出10进制以上的,要用AB.. ...

  9. HDU 1258 Sum It Up (DFS)

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  10. HDOJ/HDU 1251 统计难题(字典树啥的~Map水过)

    Problem Description Ignatius最近遇到一个难题,老师交给他很多单词(只有小写字母组成,不会有重复的单词出现),现在老师要他统计出以某个字符串为前缀的单词数量(单词本身也是自己 ...

随机推荐

  1. undefined variable _session php

    解决方法: if (version_compare(PHP_VERSION, '5.4.0', '<')) { if(session_id() == '') {session_start();} ...

  2. Example013操作样式

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. Ionic 2+ 安卓环境搭建

    安装 安卓studio https://developer.android.com/studio/index.html 设置一个环境变量 _JAVA_OPTIONS:-Xmx512M 添加androi ...

  4. 《物联网框架ServerSuperIO教程》-22.Web端对传感器实时监测与控制。附:v3.6.8版本,支持WebSocket

    1.ServerSuperIO v3.6.8更新内容 1.1 增加WebSocket服务端功能,支持自控模式.并发模式.单例模式,不支持轮询模式1.2 接收数据缓存与现有的IO实例分离.1.3 优化代 ...

  5. 底层码农的Stanford梦 --- 从SCPD开始 [转]

    转载自知乎: https://zhuanlan.zhihu.com/p/25010074 一开始让我写这篇文章的时候,我是拒绝的.毕竟,我不是Stanford毕业的,出来写文章介绍Stanford,难 ...

  6. 【Python3之多进程】

    一.进程和线程的简单解释 进程(process)和线程(thread)是操作系统的基本概念,但是它们比较抽象,不容易掌握. 用生活举例: (转自阮一峰网络日志) 1.计算机的核心是CPU,它承担了所有 ...

  7. biz-NewsService

    package com.pb.news.service; import java.util.List; import com.pb.news.entity.News; public interface ...

  8. usaco training 4.2.4 Cowcycles 题解

    Cowcycles题解 Originally by Don Gillies [International readers should note that some words are puns on ...

  9. Hadoop出现的错误及处理

    1.local host is: (unknown); destination host is: "yun-ubuntu":8031; 原因:yun-ubuntu这个host 并不 ...

  10. Qt中使用CEF(Windows下)

    最近项目中要在Qt中使用CEF(Chromium Embedded Framework),在这里总结下其中的几个要点. 下载合适的CEF版本 关于CEF的简介我们这里就不做介绍了,下载CEF可以有2种 ...