如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C【n+m】【m】

大量的组合,以取mod使用Lucas定理:

Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/p,p) ;

Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2314    Accepted Submission(s): 845

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans
in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.



Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
 
Input
The first line contains one integer T, means the number of cases.



Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3
Hint
Hint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; LL n,m,p; LL fact[100100]; LL QuickPow(LL x,LL t,LL m)
{
if(t==0) return 1LL;
LL e=x,ret=1LL;
while(t)
{
if(t&1) ret=(ret*e)%m;
e=(e*e)%m;
t>>=1LL;
}
return ret%m;
} void get_fact(LL p)
{
fact[0]=1LL;
for(int i=1;i<=p+10;i++)
fact[i]=(fact[i-1]*i)%p;
} LL Lucas(LL n,LL m,LL p)
{
///lucas(n,m,p)=c[n%p][m%p]*lucas(n/p,m/p,p);
LL ret=1LL;
while(n&&m)
{
LL a=n%p,b=m%p;
if(a<b) return 0;
ret=(ret*fact[a]*QuickPow((fact[b]*fact[a-b])%p,p-2,p))%p;
n/=p; m/=p;
}
return ret%p;
} int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
LL n,m,p;
cin>>n>>m>>p;
get_fact(p);
cout<<Lucas(n+m,m,p)<<endl;
}
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

HDOJ 3037 Saving Beans的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  6. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  7. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  8. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  9. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

随机推荐

  1. 使用邮件发送执行时间久的SQL语句

    ALTER proc [dbo].[usp_EmailLongRunningSQL] as begin declare@LongRunningQueries AS TABLE ( lrqId int ...

  2. java中间==、equals和hashCode差额

    java于==.equals().hashCode()和比较两个对象. 关于== ==是easy理解的.java设计java就是要比較两个对象是不是同一个对象. 对于引用变量而言.比較的时候两个引用变 ...

  3. Linux平台下裸设备的绑定:

    Linux平台下裸设备的绑定: 运用RAW绑定 方法一 raw的配置(1) [root@qs-dmm-rh2 mapper]# cat /etc/rc.local #!/bin/sh # # This ...

  4. ABP-N层架构

    ABP理论学习之N层架构   返回总目录 自从写这个系列博客之后,发现很多园友还是希望有个直接运行的demo,其实在github上就有官方的demo,我直接把这demo的链接放到这里吧,另外,我分析, ...

  5. MVC 应用免受 CSRF攻击

    保护ASP.NET 应用免受 CSRF 攻击   CSRF是什么? CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack ...

  6. ASP.NET自定义控件组件开发 第三章 为控件添加事件 后篇

    原文:ASP.NET自定义控件组件开发 第三章 为控件添加事件 后篇 第三章 为控件添加事件 后篇 前一篇文章只是简单的说了下事件,但是大家应该方法,在ASP.NET自定义控件中只是简单那么定义事件是 ...

  7. Mongodb 之insert瞬时完成,测试数据---飞天博客

    这几天看mongdb官方网站,然后将执行数据.突然,我发现,该数据确实很强大,在这里说话数据.我用普通的pc机,amd双核 2.7GHz,4G内存,当然,当系统不只是在测试作为数据库server的.同 ...

  8. c++内存泄漏处理(积累)

    写c++程序时,常常会出现内存泄漏的问题,这里从网上找了一种非常麻烦的方法:假设想找到每一个cpp文件的内存泄漏,都必须在每一个cpp加上例如以下代码: #include <crtdbg.h&g ...

  9. ORA-38760: This database instance failed to turn on flashback database 第三篇

    ORA-38760: This database instance failed to turn on flashback database  第三篇 第一篇 第二篇 问题现象:      在数据库a ...

  10. POJ2195 Going Home 【最小费用流】+【最佳匹配图二部】

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18169   Accepted: 9268 Descr ...