如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C【n+m】【m】

大量的组合,以取mod使用Lucas定理:

Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/p,p) ;

Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2314    Accepted Submission(s): 845

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans
in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.



Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
 
Input
The first line contains one integer T, means the number of cases.



Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3
Hint
Hint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; LL n,m,p; LL fact[100100]; LL QuickPow(LL x,LL t,LL m)
{
if(t==0) return 1LL;
LL e=x,ret=1LL;
while(t)
{
if(t&1) ret=(ret*e)%m;
e=(e*e)%m;
t>>=1LL;
}
return ret%m;
} void get_fact(LL p)
{
fact[0]=1LL;
for(int i=1;i<=p+10;i++)
fact[i]=(fact[i-1]*i)%p;
} LL Lucas(LL n,LL m,LL p)
{
///lucas(n,m,p)=c[n%p][m%p]*lucas(n/p,m/p,p);
LL ret=1LL;
while(n&&m)
{
LL a=n%p,b=m%p;
if(a<b) return 0;
ret=(ret*fact[a]*QuickPow((fact[b]*fact[a-b])%p,p-2,p))%p;
n/=p; m/=p;
}
return ret%p;
} int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
LL n,m,p;
cin>>n>>m>>p;
get_fact(p);
cout<<Lucas(n+m,m,p)<<endl;
}
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

HDOJ 3037 Saving Beans的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. poj—— 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  6. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  7. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  8. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  9. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

随机推荐

  1. 简单的反射 把datatable 转换成list对象

    /// <summary> /// 把datatable 转换成list对象 /// </summary> /// <typeparam name="T&quo ...

  2. 升级到cocos2d-x 2.0.2代码差异

    来自:http://www.cnblogs.com/TopWin/archive/2012/09/12/2682042.html 近期看cocos2d-x 2.0.2公布后升级了一下.升级后发现又出现 ...

  3. iOS 真机调试(最具体的步骤来解决历史,hmt精心打造)

    /*************************************************************1************************************* ...

  4. 使用ThinkPHP框架高速发展网站(多图)

    使用ThinkPHP框架高速搭建站点 这一周一直忙于做实验室的站点,基本功能算是完毕了.比較有收获的是大概了解了ThinkPHP框架.写一些东西留作纪念吧.假设对于相同是Web方面新手的你有一丝丝帮助 ...

  5. 英特尔® 硬件加速执行管理器安装指南 — Microsoft Windows*

    介绍 本文将指导您安装英特尔® 硬件加速执行管理器(英特尔® HAXM),这是一款可以使用英特尔® 虚拟化技术(VT)加快 Android* 开发速度的硬件辅助虚拟化引擎(管理程序). 前提条件 英特 ...

  6. Case learning

    bad case: <?php foreach($user_detail AS $val) { if(!empty($val->portrait)) { //假设这个循环从来没有到达过 $ ...

  7. RESTful API Design With NodeJS & Restify

    http://code.tutsplus.com/tutorials/restful-api-design-with-nodejs-restify--cms-22637 The RESTful API ...

  8. Paint获取Text的宽和高的数据

    获取字符串的宽度: public static float GetTextWidth(String text, float Size) { // 第一个参数是要计算的字符串,第二个参数是字提大小 Te ...

  9. Java NIO 系列教程(转)

    原文中说了最重要的3个概念,Channel 通道Buffer 缓冲区Selector 选择器其中Channel对应以前的流,Buffer不是什么新东西,Selector是因为nio可以使用异步的非堵塞 ...

  10. Uva 10131 Is Bigger Smarter? (LIS,打印路径)

    option=com_onlinejudge&Itemid=8&page=show_problem&problem=1072">链接:UVa 10131 题意: ...