hihocoder 网络流二·最大流最小割定理
网络流二·最大流最小割定理
描述
小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么?
小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t。每一条边e(u,v)具有容量c(u,v)。网络流的最大流问题求解的就是从s到t最多能有多少流量。
小Hi:那这个问题解决办法呢?
小Ho:解决网络流的基本思路就是寻找增广路,不断更新残留网络。直到找不到新的增广路,此时得到的流就是该网络的最大流。
小Hi:没错,看来你记得很牢嘛。
小Ho:哎嘿嘿,不过这里我有一个问题,为什么找不到增广路时就已经找到了最大流呢?
小Hi:这一次我就来解决你的疑惑,首先我们要从网络流的割开始讲起。
对于一个网络流图G=(V,E),其割的定义为一种点的划分方式:将所有的点划分为S和T=V-S两个部分,其中源点s∈S,汇点t∈T。
对于一个割(S,T),我们定义净流f(S,T)表示穿过割(S,T)的流量之和,即:
f(S,T) = Σf(u,v) | u∈S,v∈T
举个例子(该例子选自算法导论):
净流f = f(2,4)+f(3,4)+f(3,5) = 12+(-4)+11 = 19
同时我们定义割的容量C(S,T)为所有从S到T的边容量之和,即:
C(S,T) = Σc(u,v) | u∈S,v∈T
同样在上面的例子中,其割的容量为:
c(2,4)+c(3,5)=12+11=23
小Ho:也就是说在计算割(S,T)的净流f(S,T)时可能存在反向的流使得f(u,v)<0,而容量C(S,T)一定是非负数。
小Hi:你这么说也没错。实际上对于任意一个割的净流f(S,T)总是和网络流的流量f相等。比如上面例子中我们改变一下割的方式:
可以计算出对于这两种情况净流f(S,T)仍然等于19。
一个直观的解释是:根据网络流的定义,只有源点s会产生流量,汇点t会接收流量。因此任意非s和t的点u,其净流量一定为0,也即是Σ(f(u,v))=0。而源点s的流量最终都会通过割(S,T)的边到达汇点t,所以网络流的流f等于割的静流f(S,T)。
严格的证明如下:
f(S,T) = f(S,V) - f(S,S)
从S到T的流等于从S到所有节点的流减去从S到S内部节点的流
f(S,T) = f(S,V)
由于S内部的节点之间存在的流一定有对应的反向流,因此f(S,S)=0
f(S,T) = f(s,V) + f(S-s,V)
再将S集合分成源点s和其他属于S的节点
f(S,T) = f(s,V)
由于除了源点s以外其他节点不会产生流,因此f(S-s,V)=0
f(S,T) = f(s,V) = f
所以f(S,T)等于从源点s出来的流,也就是网络的流f。
小Ho:简单理解的话,也就是说任意一个割的净流f(S,T)都等于当前网络的流量f。
小Hi:是这样的。而对于任意一个割的净流f(S,T)一定是小于等于割的容量C(S,T)。那也即是,对于网络的任意一个流f一定是小于等于任意一个割的容量C(S,T)。
而在所有可能的割中,存在一个容量最小的割,我们称其为最小割。
这个最小割限制了一个网络的流f上界,所以有:
对于任一个网络流图来说,其最大流一定是小于等于最小割的。
小Ho:但是这和增广路又有什么关系呢?
小Hi:接下来就是重点了。利用上面讲的知识,我们可以推出一个最大流最小割定理:
对于一个网络流图G=(V,E),其中有源点s和汇点t,那么下面三个条件是等价的:
1. 流f是图G的最大流
2. 残留网络Gf不存在增广路
3. 对于G的某一个割(S,T),此时f = C(S,T)
首先证明1 => 2:
我们利用反证法,假设流f是图G的最大流,但是残留网络中还存在有增广路p,其流量为fp。则我们有流f'=f+fp>f。这与f是最大流产生矛盾。
接着证明2 => 3:
假设残留网络Gf不存在增广路,所以在残留网络Gf中不存在路径从s到达t。我们定义S集合为:当前残留网络中s能够到达的点。同时定义T=V-S。
此时(S,T)构成一个割(S,T)。且对于任意的u∈S,v∈T,有f(u,v)=c(u,v)。若f(u,v)<c(u,v),则有Gf(u,v)>0,s可以到达v,与v属于T矛盾。
因此有f(S,T)=Σf(u,v)=Σc(u,v)=C(S,T)。
最后证明3 => 1:
由于f的上界为最小割,当f到达割的容量时,显然就已经到达最大值,因此f为最大流。
这样就说明了为什么找不到增广路时,所求得的一定是最大流。
小Ho:原来是这样,我明白了。
输入
第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。
第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。
给定的图中默认源点为1,汇点为N。可能有重复的边。
输出
第1行:2个整数A B,A表示最小割的容量,B表示给定图G最小割S集合的点数。
第2行:B个空格隔开的整数,表示S集合的点编号。
若存在多个最小割可以输出任意一个的解。
- 样例输入
-
6 7
1 2 3
1 3 5
2 4 1
3 4 2
3 5 3
4 6 4
5 6 2 - 样例输出
-
5 4
1 2 3 5 分析:最小割最大流,dicnic;
代码:#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=5e2+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,k,t,h[maxn],tot,vis[maxn],s,cur[maxn];
bool flag;
set<int>ans;
struct node
{
int to,nxt,cap,flow;
}e[<<];
void add(int x,int y,int z)
{
e[tot].to=y;
e[tot].nxt=h[x];
e[tot].cap=z;
h[x]=tot++;
e[tot].to=x;
e[tot].nxt=h[y];
h[y]=tot++;
}
bool bfs()
{
memset(vis,,sizeof vis);
queue<int>p;
p.push(s);
vis[s]=;
if(flag)ans.insert(s);
while(!p.empty())
{
int x=p.front();p.pop();
for(int i=h[x];i!=-;i=e[i].nxt)
{
int to=e[i].to,cap=e[i].cap,flow=e[i].flow;
if(!vis[to]&&cap>flow)
{
vis[to]=vis[x]+;
p.push(to);
if(flag)ans.insert(to);
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t||a==)return a;
int ans=,j;
for(int&i=cur[x];i!=-;i=e[i].nxt)
{
int to=e[i].to,cap=e[i].cap,flow=e[i].flow;
if(vis[to]==vis[x]+&&(j=dfs(to,min(a,cap-flow)))>)
{
e[i].flow+=j;
e[i^].flow-=j;
ans+=j;
a-=j;
if(a==)break;
}
}
return ans;
}
int max_flow(int s,int t)
{
int flow=,i;
while(bfs())
{
rep(i,,n)cur[i]=h[i];
flow+=dfs(s,inf);
}
return flow;
}
int main()
{
int i,j;
memset(h,-,sizeof h);
scanf("%d%d",&n,&m);
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
s=,t=n;
printf("%d",max_flow(s,t));
flag=true;
bfs();
printf(" %d\n",ans.size());
for(int x:ans)printf("%d ",x);
printf("\n");
//system("Pause");
return ;
}
hihocoder 网络流二·最大流最小割定理的更多相关文章
- [HihoCoder1378]网络流二·最大流最小割定理
思路: 根据最大流最小割定理可得最大流与最小割相等,所以可以先跑一遍EdmondsKarp算法.接下来要求的是经过最小割切割后的图中$S$所属的点集.本来的思路是用并查集处理所有前向边构成的残量网络, ...
- 【hihocoder 1378】网络流二·最大流最小割定理
[Link]:http://hihocoder.com/problemset/problem/1378 [Description] [Solution] 在求完最小割(最大流)之后; 可以在剩余网络中 ...
- hiho 第116周,最大流最小割定理,求最小割集S,T
小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? 小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t.每一条边e(u,v)具有容量c ...
- 【codevs1907】方格取数3(最大流最小割定理)
网址:http://codevs.cn/problem/1907/ 题意:在一个矩阵里选不相邻的若干个数,使这些数的和最大. 我们可以把它看成一个最小割,答案就是矩阵中的所有数-最小割.先把矩阵按国际 ...
- 牛客暑期第六场G /// 树形DP 最大流最小割定理
题目大意: 输入t,t个测试用例 每个测试用例输入n 接下来n行 输入u,v,w,树的无向边u点到v点权重为w 求任意两点间的最大流的总和 1.最大流最小割定理 即最大流等于最小割 2.无向树上的任意 ...
- [最短路,最大流最小割定理] 2019 Multi-University Training Contest 1 Path
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6582 Path Time Limit: 2000/1000 MS (Java/Others) Mem ...
- [网络流24题#9] [cogs734] 方格取数 [网络流,最大流最小割]
将网格分为两部分,方法是黑白染色,即判断(i+j)&1即可,分开后从白色格子向黑色格子连边,每个点需要四条(边界点可能更少),也就是每个格子周围的四个方向.之后将源点和汇点分别于黑白格子连边, ...
- cogs750栅格网络流(最小割)
750. 栅格网络流 ★★☆ 输入文件:flowa.in 输出文件:flowa.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] Bob 觉得一般图的最大流问题太 ...
- 最大流最小割——bzoj1001狼抓兔子,洛谷P2598
前置知识 平面图 平面图就是平面上任意边都不相交的图.(自己瞎画的不算XD) 对偶图 比如说这个图,我们发现平面图肯定会把平面分成不同的区域(感觉像拓扑图),并把这些区域当做每个点(不被包围的区域独自 ...
随机推荐
- gson学习以及进阶文章推荐
Json转换利器Gson之实例一-简单对象转化和带泛型的List转化 (http://blog.csdn.net/lk_blog/article/details/7685169)Json转换利器Gso ...
- Java中的Builder模式
package com.mc.bsfram.others.entity; public class Person { private String name; private String addre ...
- hdu_2243_考研路茫茫——单词情结(AC自动机+矩阵)
题目链接:hdu_2243_考研路茫茫——单词情结 题意: 让你求包含这些模式串并且长度不小于L的单词种类 题解: 这题是poj2788的升级版,没做过的强烈建议先做那题. 我们用poj2778的方法 ...
- Linq第二讲
这一讲,来说说集合.因为linq主要用于对数据源进行查询,集合是最常见的数据源. 集合 形式: 数组,列表List<T> Arraylist等. 特点: 可通过索引或键访问.可进行fore ...
- varnish缓存安装使用
varnish PDF http://files.cnblogs.com/jimingsong/varnish.pdf 目前介绍CentOS6.4-64位系统 yum安装varnish: 配置varn ...
- java中的Unicode中文转义
String ori = "\u5e7f\u4e1c"; public static String convertUnicode(String ori) { char aChar; ...
- 还在纠结 Flux 或 Relay,或许 Redux 更适合你
重磅消息,Redux 1.0 发布,终于可以放心用于生产环境了! 在这个端应用技术膨胀的时代,每天都有一大堆框架冒出,号称解决了 XYZ 等一系列牛 X 的问题,然后过一段时间就不被提起了.但开发的应 ...
- 使用rsync命令提高文件传输效率
众多数据库服务器的管理过程中,在不同服务器间的文件传输是免不了的.您可以使用scp命令或FTP方法完成文件的发送和接收,这篇文章我将给大家介绍另外一种方法,这就是rsync命令.rsync是文件传输程 ...
- ClickOnce发布注意的一些细节
细节1.应用程序启动前检查更新: 步骤:主工程-右键属性-发布(页面)-按“更新”按钮-勾选“应用程序应该检查更新(T)”-选择“应用程序启动前(F)”,如下图: 细节二:ClickOnce发布时&q ...
- Polycarp's problems
Polycarp's problems time limit per test 2 seconds memory limit per test 256 megabytes input standard ...