HDU 4126 Genghis Khan the Conqueror MST+树形dp
题意:
给定n个点m条边的无向图。
以下m行给出边和边权
以下Q个询问。
Q行每行给出一条边(一定是m条边中的一条)
表示改动边权。
(数据保证改动后的边权比原先的边权大)
问:改动后的最小生成树的权值是多少。
每一个询问互相独立(即每次询问都是对于原图改动)
保证没有重边。
求:全部改动后的最小生成树权值的平均值。
思路:
首先跑一个最小生成树。
求得这个MST的权值 int mst;
对于每一个询问(u.v,dis);
若(u,v) 不是MST上的边,则此时的权值就是 mst
否则我们断开树边(u,v),然后找u点集和v点集之间的边中权值最小的边cost[u][v];
这样当前的权值就是 mst - g[u][v] + min(cost[u][v], dis);
剩下就是怎样计算cost;
MST会求得一个无根树。
我们把无根树转成以u为根时 ,对于v子树事实上是不变的。
剩下就是简单dp了
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <queue>
#include <algorithm>
#include <cmath>
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x <0) {
putchar('-');
x = -x;
}
if(x>9) pt(x/10);
putchar(x%10+'0');
}
typedef long long ll;
using namespace std;
const ll inf = 100000000;
const int N = 3005;
ll g[N][N], d[N], mst, cost[N][N];
bool vis[N], choose[N][N];
int n, m;
vector<int> G[N];
ll dfs(int u, int fa, int src){
ll siz = inf;
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa)continue;
ll tmp = dfs(v, u, src);
siz = min(siz, tmp);
cost[u][v] = cost[v][u] = min(cost[u][v], tmp);
}
if(fa != src)
siz = min(siz, g[u][src]);
return siz;
}
int pre[N];
void MST(){
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
cost[i][j] = g[i][j] = inf, choose[i][j] = 0; while(m--){
int u, v; ll dis; rd(u);rd(v); rd(dis);
g[u][v] = g[v][u] = min(g[u][v], dis);
}
for(int i = 0; i < n; i++)
{
d[i] = inf;
G[i].clear();
vis[i] = 0;
pre[i] = -1;
}
d[0] = 0;
mst = 0;
for(int i = 0; i < n; i++)
{
int pos = -1;
for(int j = 0; j < n; j++)
if(!vis[j] &&(pos == -1 || d[pos] > d[j]))
pos = j;
if(pre[pos]!=-1)
{
G[pos].push_back(pre[pos]);
G[pre[pos]].push_back(pos);
choose[pos][pre[pos]] = choose[pre[pos]][pos] = 1;
}
for(int j = 0; j < n; j++)
if(d[j] > g[j][pos])
{
d[j] = g[j][pos];
pre[j] = pos;
}
vis[pos] = 1;
mst += d[pos];
}
} int main() {
int q, u, v; ll dis;
while(cin>>n>>m, n+m) {
MST();
for(int i = 0; i < n; i++)
dfs(i, -1, i);
rd(q);
ll ans = 0;
for(int i = 1; i <= q; i++) {
rd(u); rd(v); rd(dis);
if(choose[u][v] == false)
ans += mst;
else
ans += mst - g[u][v] + min(cost[u][v], dis);
}
printf("%.4f\n",(double)ans/(double)q);
}
return 0;
}
HDU 4126 Genghis Khan the Conqueror MST+树形dp的更多相关文章
- HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...
- HDU 4126 Genghis Khan the Conqueror (树形DP+MST)
题意:给一图,n个点,m条边,每条边有个花费,给出q条可疑的边,每条边有新的花费,每条可疑的边出现的概率相同,求不能经过原来可疑边 (可以经过可疑边新的花费构建的边),注意每次只出现一条可疑的边,n个 ...
- hdu4126Genghis Khan the ConquerorGenghis Khan the Conqueror(MST+树形DP)
题目请戳这里 题目大意:给n个点,m条边,每条边权值c,现在要使这n个点连通.现在已知某条边要发生突变,再给q个三元组,每个三元组(a,b,c),(a,b)表示图中可能发生突变的边,该边一定是图中的边 ...
- hdu4126Genghis Khan the Conqueror (最小生成树+树形dp)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others) Total Submiss ...
- HDU-4126 Genghis Khan the Conqueror 树形DP+MST (好题)
题意:给出一个n个点m条边的无向边,q次询问每次询问把一条边权值增大后问新的MST是多少,输出Sum(MST)/q. 解法:一开始想的是破圈法,后来想了想应该不行,破圈法应该只能用于加边的情况而不是修 ...
- 刷题总结——Genghis Khan the Conqueror (hdu4126)
题目: Genghis Khan(成吉思汗)(1162-1227), also known by his birth name Temujin(铁木真) and temple name Taizu(元 ...
- UVA- 1504 - Genghis Khan the Conqueror(最小生成树-好题)
题意: n个点,m个边,然后给出m条边的顶点和权值,其次是q次替换,每次替换一条边,给出每次替换的边的顶点和权值,然后求出这次替换的最小生成树的值; 最后要你输出:q次替换的平均值.其中n<30 ...
- uvalive 5834 Genghis Khan The Conqueror
题意: 给出一个图,边是有向的,现在给出一些边的变化的信息(权值大于原本的),问经过这些变换后,MST总权值的期望,假设每次变换的概率是相等的. 思路: 每次变换的概率相等,那么就是求算术平均. 首先 ...
- 【Uvalive 5834】 Genghis Khan the Conqueror (生成树,最优替代边)
[题意] 一个N个点的无向图,先生成一棵最小生成树,然后给你Q次询问,每次询问都是x,y,z的形式, 表示的意思是在原图中将x,y之间的边增大(一定是变大的)到z时,此时最小生成数的值是多少.最后求Q ...
随机推荐
- Computational Geometry Template
顿时觉得神清气爽!! #include <iostream> #include <math.h> #define eps 1e-8 #define zero(x) (((x)& ...
- ASP.NET - GridView实现点击编辑列
加载: 点击编辑: 数据库设计: 前端代码: DataKeyNames="ID" 设置点击“编辑”选项的时候,要获取的值,一般获取ID主键,便于修改数据. AutoGenerat ...
- OCM读书笔记(2) - PL/SQL 基础
1. % type 用法,提取% type所在字段的类型 declare myid dept.deptno % type; myname dept.dname % type;begin ...
- Blackboard - 百度百科
http://wapbaike.baidu.com/view/1969844.htm?ssid=0&from=844b&uid=0&pu=sz%401320_1001%2Cta ...
- J2SE学习小结
开始接触Java的学习,Java 2 Standard Edition为Java2平台的标准版,其包括了构成Java语言核心的类,此番学习算是学习了Java体系中的基础部分. 学习框架大致整理如下: ...
- json转换成list map集合
import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Set; i ...
- Swift - 使用网格(UICollectionView)进行流布局
一.网格UICollectionView最典型的例子是iBooks.其主要属性如下: 1,layout 该属性表示布局方式,有Flow.Custom两种布局方式.默认是Flow流式布局. 2,Acce ...
- RF+Selenium2Library+Sikuli集成环境搭建
Sikuli是通过截图来编写代码的脚本语言,他是对于Selenium不好处理的一些模态窗口.flash等的利器.废话少说,直接开始安装吧.安装RF+Selenium2Library的环境这里就不说了, ...
- poj 1094
Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26911 Accepted: 92 ...
- java多线程12设计模式
1.Single Threaded Execution Pattern(单线程运行模式) 2.Immutable Pattern(一成不变的模式) 3.Guarded Suspension Patte ...