时间复杂度为 n*logn的LIS算法是用一个stack维护一个最长递增子序列

如果存在 x < y 且  a[x] > a[y],那么我们可以用a[y]去替换a[x]
因为a[y]比较小,具有更大的潜力,使得后面的元素和它成为更长的递增序列
如例子: a[] = {1,4,8,3,6};
我们用一个stack st保存当前的最长递增子序列,top = 0;
很明显,初始化时st[top] = 1;
之后随着i循环变量的递增,如果
a[i] > st[top] , 那么 st[++top] = a[i]. 很显然top+1就是当前最长递增子序列的长度
这样子判断的时间复杂度是O(1),
为什么可以这样子判断???
因为st保存的是当前的最长递增子序列,所以如果a[i] > st[top] 那么a[i]可以加入st中
从而形成更长的最长递增子序列。
那么可能会有想法是,如果数据是1 5 3 4,很明显,最长递增子序列是1 3 4,
但是根据上面的想法是 1 5 形成最长递增子序列。
 
别担心
下面介绍 当  a[i] < st[top]时的处理方法
上面我们说过, 如果存在x < y 且 a[x] > a[y] 我们可以使用a[y]去替换a[x]
因为a[y] 具有更大的潜力,使得后面的元素和它成为更长的递增序列。
所以当 a[i] < st[top]时, 显然 st中的元素就是a[x],而a[i]就是a[y]
我们在st中使用二分查找找到第一个大于等于a[i]的元素,然后用a[i]去替换它
比如 st = 1 , 4 , 8时
a[i] = 3,
我们可以用a[i]去替换4,从而在不影响结果的前提下,减少时间复杂度
 
 
题目uva10534
给定一个一组数字,要我们求这样一个序列
在序列的左边是递增的,右边是递减的,且递增和递减的个数要是一样的
思路:分别从两边进行最长递增子序列的dp,
    dp1是从下标 0 -> n-1   进行dp    
    dp2是从下标 n-1 -> 0   进行dp
    所以 ans = max{ min(dp1[i]-1, dp2[i]-1)+1, 0<=i<n };
    但是题目的数据有1w,O(N*N)的算法是不行的,
    所以要用nlogn的算法
 
 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
using namespace std;
typedef long long LL;
const int INF = <<;
const int N = + ;
int min(const int &a, const int &b)
{
return a < b ? a :b;
}
int max(const int &a, const int &b)
{
return a < b ? b : a;
}
int st[N];
int top;
void LIS(int *a, int n, int *dp)
{
int i,j;
top = ;
st[top] = a[];
for(i=; i<n; ++i)
{
if(a[i] > st[top])
{
st[++top] = a[i];
dp[i] = top + ;
}
else
{
int low = , high = top;
while(low <= high)
{
int mid = (low + high) >> ;
if(st[mid]<a[i])
low = mid + ;
else
high = mid - ;
}
st[low] = a[i];
dp[i] = low +;
}
}
}
int a[N];
int dp[][N];
int main()
{
int n,i,j;
while(scanf("%d",&n)!=EOF)
{
for(i=; i<n; ++i)
{
scanf("%d",&a[i]);
dp[][i] = dp[][i] = ;
}
LIS(a,n,dp[]); int low = ,high = n - ;
while(low < high)
{
int t = a[low];
a[low] = a[high];
a[high] = t;
low ++;
high --;
}
LIS(a,n,dp[]); int ans = ;
for(i=; i<n; ++i)
{
int t = * min(dp[][i]-,dp[][n-i-]-) +;//因为第二次dp是将数组倒过来dp,所以要n-i-1
ans = max(ans,t);
}
printf("%d\n",ans);
}
return ;
}


 

时间复杂度为O(nlogn)的LIS算法的更多相关文章

  1. 时间复杂度为O(nlogn)的排序算法

    时间复杂度为O(nlogn)的排序算法(归并排序.快速排序),比时间复杂度O(n²)的排序算法更适合大规模数据排序. 归并排序 归并排序的核心思想 采用"分治思想",将要排序的数组 ...

  2. 平均时间复杂度为O(nlogn)的排序算法

    本文包括 1.快速排序 2.归并排序 3.堆排序 1.快速排序 快速排序的基本思想是:采取分而治之的思想,把大的拆分为小的,每一趟排序,把比选定值小的数字放在它的左边,比它大的值放在右边:重复以上步骤 ...

  3. 算法心得1:由$nlogn$复杂度的LIS算法引起的思考

    LIS(Longest Increasing Subsequence)是一类典型的动态规划类问题,简化描述如下: 给定$N(n) = \{1,2...,n\}$的一个排列$P(n)$,求$P(n)$中 ...

  4. N种方法妙讲LIS算法

    LIS算法经典汇总 假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5.下面一步一步试着找出它.我们定义一个序列B,然后令 i = 1 to 9 逐个 ...

  5. 备战秋招之十大排序——O(nlogn)级排序算法

    时间复杂度O(nlogn)级排序算法 五.希尔排序 首批将时间复杂度降到 O(n^2) 以下的算法之一.虽然原始的希尔排序最坏时间复杂度仍然是O(n^2),但经过优化的希尔排序可以达到 O(n^{1. ...

  6. java实现LIS算法,出操队形问题

    假设有序列:2,1,3,5,求一个最长上升子序列就是2,3,5或者1,3,5,长度都为3. LIS算法的思想是: 设存在序列a. ① 如果只有一个元素,那么最长上升子序列的长度为1: ② 如果有两个元 ...

  7. 最大子序列和问题--时间复杂度O(NlogN)

    最大子序列和问题--时间复杂度O(NlogN) package a; /* * 最大子序列和问题,时间复杂度O(NlogN) */ public class Sequence { private st ...

  8. LeetCode 42. Trapping Rain Water 【两种解法】(python排序遍历,C++ STL map存索引,时间复杂度O(nlogn))

    LeetCode 42. Trapping Rain Water Python解法 解题思路: 本思路需找到最高点左右遍历,时间复杂度O(nlogn),以下为向左遍历的过程. 将每一个点的高度和索引存 ...

  9. 最长上升子序列算法(n^2 及 nlogn) (LIS) POJ2533Longest Ordered Subsequence

    问题描述: 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列 ...

随机推荐

  1. CImage类

    CImage封装了DIB(设备无关位图)的功能,因而可以让我们能够处理每个位图像素.这里介绍GDI+和CImage的一般使用方法和技巧. TAG: GDI  CImage  后处理   我们知道,Vi ...

  2. C++ map

    C++ map Map is an associative container that contains a sorted list of unique key-value pairs. That ...

  3. IDL 自己定义功能

    function add,x,y return, x+y end pro sum x=1 y=2 print,add(x,y) end 版权声明:本文博客原创文章,博客,未经同意,不得转载.

  4. OMR数据查询

    查询 1.查询所有的. var query = from p in _Context.Info select p; var query = _Context.Info; 2.单条件查询 等值查 var ...

  5. ThinkPhp学习10

    原文:ThinkPhp学习10 查询操作 Action模块 User下的search public function search(){ //判断username是否已经传入,且不为空 if(isse ...

  6. js下读取input中的value值

    很多人(包括我),总想像以前操作js一样,读取到input中的值:document.getElementById('').value; 结果事实证明这样读到得是null. eval(document. ...

  7. linux文件夹介绍

    (1)documentation 这个文件夹下没有内核代码,仅仅有一套实用的文档,但这些文档的质量不一.比如内核文档的文件系统,在该文件夹下有相当优秀并且相当完整的文档:而另外一部分内核,比如进程调度 ...

  8. 以对象管理资源——C++智能指针auto_ptr简介

    auto_ptr是C++标准库提供的类模板,它可以帮助程序员自动管理用new表达式动态分配的单个对象.auto_ptr对象被初始化为指向由new表达式创建的对象,当auto_ptr对象的生命期结束时, ...

  9. 鸟哥之安裝 CentOS7.x

    http://linux.vbird.org/linux_basic/0157installcentos7.php since 2002/01/01 新手建議 開始閱讀之前 網站導覽 Linux 基礎 ...

  10. 浅谈 PHP 变量可用字符

    原文:浅谈 PHP 变量可用字符 先来说说php变量的命名规则,百度下一抓一大把:(1) PHP的变量名区分大小写;(2) 变量名必须以美元符号$开始;(3) 变量名开头可以以下划线开始;(4) 变量 ...