时间复杂度为O(nlogn)的LIS算法
时间复杂度为 n*logn的LIS算法是用一个stack维护一个最长递增子序列
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
using namespace std;
typedef long long LL;
const int INF = <<;
const int N = + ;
int min(const int &a, const int &b)
{
return a < b ? a :b;
}
int max(const int &a, const int &b)
{
return a < b ? b : a;
}
int st[N];
int top;
void LIS(int *a, int n, int *dp)
{
int i,j;
top = ;
st[top] = a[];
for(i=; i<n; ++i)
{
if(a[i] > st[top])
{
st[++top] = a[i];
dp[i] = top + ;
}
else
{
int low = , high = top;
while(low <= high)
{
int mid = (low + high) >> ;
if(st[mid]<a[i])
low = mid + ;
else
high = mid - ;
}
st[low] = a[i];
dp[i] = low +;
}
}
}
int a[N];
int dp[][N];
int main()
{
int n,i,j;
while(scanf("%d",&n)!=EOF)
{
for(i=; i<n; ++i)
{
scanf("%d",&a[i]);
dp[][i] = dp[][i] = ;
}
LIS(a,n,dp[]); int low = ,high = n - ;
while(low < high)
{
int t = a[low];
a[low] = a[high];
a[high] = t;
low ++;
high --;
}
LIS(a,n,dp[]); int ans = ;
for(i=; i<n; ++i)
{
int t = * min(dp[][i]-,dp[][n-i-]-) +;//因为第二次dp是将数组倒过来dp,所以要n-i-1
ans = max(ans,t);
}
printf("%d\n",ans);
}
return ;
}
时间复杂度为O(nlogn)的LIS算法的更多相关文章
- 时间复杂度为O(nlogn)的排序算法
时间复杂度为O(nlogn)的排序算法(归并排序.快速排序),比时间复杂度O(n²)的排序算法更适合大规模数据排序. 归并排序 归并排序的核心思想 采用"分治思想",将要排序的数组 ...
- 平均时间复杂度为O(nlogn)的排序算法
本文包括 1.快速排序 2.归并排序 3.堆排序 1.快速排序 快速排序的基本思想是:采取分而治之的思想,把大的拆分为小的,每一趟排序,把比选定值小的数字放在它的左边,比它大的值放在右边:重复以上步骤 ...
- 算法心得1:由$nlogn$复杂度的LIS算法引起的思考
LIS(Longest Increasing Subsequence)是一类典型的动态规划类问题,简化描述如下: 给定$N(n) = \{1,2...,n\}$的一个排列$P(n)$,求$P(n)$中 ...
- N种方法妙讲LIS算法
LIS算法经典汇总 假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5.下面一步一步试着找出它.我们定义一个序列B,然后令 i = 1 to 9 逐个 ...
- 备战秋招之十大排序——O(nlogn)级排序算法
时间复杂度O(nlogn)级排序算法 五.希尔排序 首批将时间复杂度降到 O(n^2) 以下的算法之一.虽然原始的希尔排序最坏时间复杂度仍然是O(n^2),但经过优化的希尔排序可以达到 O(n^{1. ...
- java实现LIS算法,出操队形问题
假设有序列:2,1,3,5,求一个最长上升子序列就是2,3,5或者1,3,5,长度都为3. LIS算法的思想是: 设存在序列a. ① 如果只有一个元素,那么最长上升子序列的长度为1: ② 如果有两个元 ...
- 最大子序列和问题--时间复杂度O(NlogN)
最大子序列和问题--时间复杂度O(NlogN) package a; /* * 最大子序列和问题,时间复杂度O(NlogN) */ public class Sequence { private st ...
- LeetCode 42. Trapping Rain Water 【两种解法】(python排序遍历,C++ STL map存索引,时间复杂度O(nlogn))
LeetCode 42. Trapping Rain Water Python解法 解题思路: 本思路需找到最高点左右遍历,时间复杂度O(nlogn),以下为向左遍历的过程. 将每一个点的高度和索引存 ...
- 最长上升子序列算法(n^2 及 nlogn) (LIS) POJ2533Longest Ordered Subsequence
问题描述: 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列 ...
随机推荐
- [Codecademy] HTML&CSS 第一课:HTML Basic
本文出自 http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...
- json介绍及简单示例
JSON的定义: 一种轻量级的数据交换格式,具有良好的可读和便于快速编写的特性.业内主流技术为其提供了完整的解决方案(有点类似于正则表达式 ,获得了当今大部分语言的支持),从而可以在不同平台间进行数据 ...
- jquery学习之AJAX
1,关于AJAX的简单介绍 AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准 ...
- gant
http://gant.github.io/ http://gant.codehaus.org/
- java图形
JFreeCharteclipse图形化编程插件jigloojfaceibm的jface基于swt,swing解决了awt存在的lcd问题.swing组件:container,window,frame ...
- poj 2409+2154+2888(Burnside定理)
三道burnside入门题: Burnside定理主要理解置换群置换后每种不动点的个数,然后n种不动点的染色数总和/n为answer. 对于旋转,旋转i个时不动点为gcd(n,i). 传送门:poj ...
- CI(codeigniter)框架,routes.php设置正确,但是显示服务器错误,是__construct少写了一个下划线
今天弄了一下CI框架,大概看了一下文档,感觉CI框架非常精简,但是在做的时候遇到了问题,CI文档中提供了一个新闻系统的例子,所有工作都做完了,在浏览器中打开相对应的url是,却显示“服务器错误”,一点 ...
- Enable OWIN Cross-origin Request
微软出了一套解决方式能够解决 "同意WebAPI的 CORS 请求" http://www.asp.net/web-api/overview/security/enabling-c ...
- VSTO之旅系列(五):创建Outlook解决方案
原文:VSTO之旅系列(五):创建Outlook解决方案 本专题概要 引言 Outlook对象模型 自定义Outlook窗体 小结 一.引言 在上一个专题中,为大家简单介绍了下如何创建Word解决方案 ...
- 10 个迅速提升你 Git 水平的提示(转)
最近我们推出了两个教程:熟悉Git的基本功能和 让你在开发团队中熟练的使用Git . 我们所讨论的命令足够一个开发者在Git使用方面游刃有余.在这篇文章中,我们试图探索怎样有效的管理你的时间和充分的使 ...