贝叶斯(Bayes)定理
     (条件概率)
 
贝叶斯分类器(Bayes分类器)
  1概念:
  • 将每个属性及类别标记视为随机变量
  • 给定一个具有属性集合(A1, A2,…,An)的记录
  • 目标是预测类别属性C
  • 具体而言,要寻找使得P(C| A1, A2,…,An )最大的类别C。

2方法:

  • 利用Bayes定理计算所有类别C的后验概率P(C | A1, A2, …, An)
           
        选择使如下概率值最大的类别C :P(C | A1, A2, …, An)
        等价于使如下概率值最大:P(A1, A2, …, An|C) P(C)
 
朴素贝叶斯分类器(朴素Bayes分类器)
  • l假定给定类别的条件下属性Ai之间是独立的:   
    P(A1, A2, …, An |C) = P(A1| Cj) P(A2| Cj)… P(An| Cj) 
    可以从Ai和Cj中估算出P(Ai| Cj),类别为使P(Cj)P(Ai| Cj)最大的类Cj

举例

1、如图所示,已知以下训练集Give Birth,Can Fly,Live in Water,Have Legs的属性,判断所给出测试集是属于(class)哪一类

 

2、计算

解释:p(A|M)=6/7*6/7*2/7*2/7:  class中属于动物类的有7个,在这7个里,其中Give Birth是yes的有6个;Can Fly是no的有6个;Live in Water是yes的有2个;Have Legs是no的有2个。

p(A|N)=1/13*10/13*3/13*4/13:  class中属于非动物类的有13个,在这13个里,其中Give Birth是yes的有1个;Can Fly是no的有10个;Live in Water是yes的有3个;Have Legs是no的有4个。

因为P(A|M)P(M)>P(A|N)P(N),所以测试类为动物

贝叶斯分类器(Bayes分类器)的更多相关文章

  1. 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes

    贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...

  2. 十大经典数据挖掘算法(9) 朴素贝叶斯分类器 Naive Bayes

    贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算,也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:N ...

  3. 朴素贝叶斯分类器的应用 Naive Bayes classifier

    一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工 ...

  4. 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

    朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...

  5. 朴素贝叶斯分类器(Naive Bayes)

    1. 贝叶斯定理 如果有两个事件,事件A和事件B.已知事件A发生的概率为p(A),事件B发生的概率为P(B),事件A发生的前提下.事件B发生的概率为p(B|A),事件B发生的前提下.事件A发生的概率为 ...

  6. PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

    介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较 ...

  7. 用scikit-learn实现朴素贝叶斯分类器 转

    原文:http://segmentfault.com/a/1190000002472791 朴素贝叶斯(Naive Bayes Classifier)是一种「天真」的算法(假定所有特征发生概率是独立的 ...

  8. (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现

    一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...

  9. 朴素贝叶斯分类器(Naive Bayesian Classifier)

    本博客是基于对周志华教授所著的<机器学习>的"第7章 贝叶斯分类器"部分内容的学习笔记. 朴素贝叶斯分类器,顾名思义,是一种分类算法,且借助了贝叶斯定理.另外,它是一种 ...

随机推荐

  1. Android中帧动画的创建

    帧动画,实质上就是快速播放多张连接效果的图片,现在一般可用于下拉刷新时候的headView 实现步骤: 1.首先应该准备一组连接效果的图片 2.在res>drawable目录下创建xml文件,将 ...

  2. Hibernate5-课程笔记3

    详解Hibernate的API: (1)Configuration接口: org.hibernate.cfg.Configuration接口的作用是加载主配置文件及映射文件,以实现对Hibernate ...

  3. push类型消息中间件-消息订阅者(一)

    1.订阅者的声明方式 我们以spring组件化的方式,声明一个消息订阅者,对于消息订阅者关心的主要有: topic: 一级消息类型(又名消息主题).如TRADE 消息类型:二级消息类型,区别同一Top ...

  4. xss框架的一些想法

    今天pybeef作为一个课程设计答辩完成了,向老师介绍了很多xss利用相关的场景和技术. 先说一下已经实现了什么, 1, 浏览器版本的判断 这方面只能判断IE和firefox 火狐判断只判断了user ...

  5. hdu1024

    #include <cstdio>#include <iostream>const int MAX = 1000005; using namespace std; int nu ...

  6. iOS开发运行时总是显示4s的尺寸

    今天新建了一个工程运行时,总是显示4s的尺寸,上面有一片黑,如下图所示: 解决方法:检查启动图片,没有包含6和6plus的启动图片,添加上启动图片时运行正常:

  7. 数学#扩展欧几里德 POJ 1061&2115&2891

    寒假做的题了,先贴那时写的代码. POJ 1061 #include<iostream> #include<cstdio> typedef long long LL; usin ...

  8. 背包类问题解答——poj3624分析

    习题网址:http://poj.org/problem?id=3624 试题分析:该类题通过限定物品总数量.总质量:并且初始化每个物品的起始质量和一个量化的性质.最后求解最值的量化性质的值是多少的问题 ...

  9. ElasticSearch(5)-Mapping

    一.Mapping概述 映射 为了能够把日期字段处理成日期,把数字字段处理成数字,把字符串字段处理成全文本(Full-text)或精确的字符串值,Elasticsearch需要知道每个字段里面都包含了 ...

  10. Arch安装fcitx输入法

    安装fcitx,安装gtk.qt模块. [root@ARCH ~]# pacman -S fcitx-im :: There are 4 members in group fcitx-im: :: R ...