TCP/IP三次握手与四次挥手
三次握手:
TCP(Transmission Control Protocol) 传输控制协议
TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接
位码即tcp标志位,有6种标示:
SYN(synchronous建立联机)
ACK(acknowledgement 确认)
PSH(push传送)
FIN(finish结束)
RST(reset重置)
URG(urgent紧急)
所谓三次握手即建立TCP连接,是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发,整个流程如下图所示:
(1)第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。
(2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack (number )=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。
(3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。
SYN攻击:
在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:
#netstat -nap | grep SYN_RECV
四次挥手:
三次握手耳熟能详,四次挥手估计就..所谓四次挥手即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:
由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。
(1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。
(2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。
(3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。
(4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。
上面是一方主动关闭,另一方被动关闭的情况,实际中还会出现同时发起主动关闭的情况,具体流程如下图:
问:为什么建立连接是三次握手,而关闭连接却是四次挥手呢?
这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,己方ACK和FIN一般都会分开发送。
TCP/IP三次握手与四次挥手的更多相关文章
- TCP/IP三次握手与四次挥手的正确姿势
0.史上最容易理解的:TCP三次握手,四次挥手 https://cloud.tencent.com/developer/news/257281 A 理解TCP/IP三次握手与四次挥手的正确姿势http ...
- WireShark抓包分析以及对TCP/IP三次握手与四次挥手的分析
WireShark抓包分析TCP/IP三次握手与四次挥手 Wireshark介绍: Wireshark(前称Ethereal)是一个网络封包分析软件.功能十分强大,是一个可以在多个操作系统平台上的开源 ...
- 以女朋友为例讲解 TCP/IP 三次握手与四次挥手
背景 和女朋友异地恋一年多,为了保持感情我提议每天晚上视频聊天一次. 从好上开始,到现在,一年多也算坚持下来了. 问题 有时候聊天的过程中,我的网络或者她的网络可能会不好,视频就会卡住,听不到对方的声 ...
- TCP/IP三次握手与四次挥手(转)
一.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷本.下面是TCP报文格式图: 图1 TCP报文格式 上图中有几个字段需要重点介绍下: ...
- 31.TCP/IP 三次握手与四次挥手
TCP/IP三次握手 TCP建立连接为什么是三次握手,而不是两次或四次? TCP,名为传输控制协议,是一种可靠的传输层协议,IP协议号为6. 顺便说一句,原则上任何数据传输都无法确保绝对可靠,三次握手 ...
- 理解 TCP/IP 三次握手与四次挥手
TCP建立连接为什么是三次握手,而不是两次或四次? TCP,名为传输控制协议,是一种可靠的传输层协议,IP协议号为6. 顺便说一句,原则上任何数据传输都无法确保绝对可靠,三次握手只是确保可靠的基本需要 ...
- 理解TCP/IP三次握手与四次挥手的正确姿势
背景 注:以下情节纯属虚构,我并没有女朋友==. 和女朋友异地恋一年多,为了保持感情我提议每天晚上视频聊天一次. 从好上开始,到现在,一年多也算坚持下来了. 问题 有时候聊天的过程中,我的网络或者她的 ...
- Tcp/Ip 三次握手与四次挥手
1. TCP/IP模型 我们一般知道OSI的网络参考模型是分为7层:“应表会传网数物”——应用层,表示层,会话层,传输层,网络层,数据链路层,物理层.而实际的Linux网络层协议是参照了OSI标准,但 ...
- tcp/ip三次握手及四次挥手
三次握手Three-way Handshake 一个虚拟连接的建立是通过三次握手来实现的 1. (B) –> [SYN] –> (A) 假如服务器A和客户机B通讯. 当A要和B通信时,B首 ...
随机推荐
- 记使用vue-awesome-swiper遇到的一些问题
一.vue-awesome-swiper的使用 1.在项目中全局引用 import VueAwesomeSwiper from 'vue-awesome-swiper' // require s ...
- Spring @Async使用方法总结
引言: 在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实,在spring 3. ...
- public class的类名必须跟文件名保持一致吗?
- [UE4]移除UI(User Widget)并销毁
1.移除UI,使用“Remove from Parent”方法 2.最后一步给UI变量赋值的时候,如果保持默认选择“Select Assets”,则会把UI变量销毁(赋值为null).
- JDK8 Java 中遇到null 和为空的情况,使用Optional来解决。
空指针是我们最常见也最讨厌的异常,写过 Java 程序的同学,一般都遇到过 NullPointerException :) 初识null 详细可以参考[jdk 1.6 Java.lang.Null.P ...
- SqlServer存储过程输出参数
if exists(select 1 from sysobjects where name='P_PreOrderInfo') drop Procedure P_PreOrderInfo go Cre ...
- boost json序列化
json序列化 #ifndef FND_JSON_OBJECT_H #define FND_JSON_OBJECT_H #include <sstream> #include <bo ...
- Django的select_related 和 prefetch_related 函数优化查询
在数据库有外键的时候,使用 select_related() 和 prefetch_related() 可以很好的减少数据库请求的次数,从而提高性能.本文通过一个简单的例子详解这两个函数的作用.虽然Q ...
- 初级安全入门——Windows操作系统的安全加固
实验网络拓扑如下: 工具简介 Kali操作系统 Kali Linux是安全业内最知名的安全渗透测试专用操作系统.它的前身就是业界知名的BackTrack操作系统.BackTrack在2013年停止更新 ...
- Centos下添加用户并赋权
创建新用户 创建一个用户名为:linuxidc [root@localhost ~]# adduser linuxidc 为这个用户初始化密码,linux会判断密码复杂度,不过可以强行忽略: [roo ...