机器学习进阶-直方图与傅里叶变化-直方图均衡化 1.cv2.equalizeHist(进行直方图均衡化) 2. cv2.createCLAHA(用于生成自适应均衡化图像)
1. cv2.equalizeHist(img) # 表示进行直方图均衡化
参数说明:img表示输入的图片
2.cv2.createCLAHA(clipLimit=8.0, titleGridSize=(8, 8)) 用于生成自适应均衡化图像
参数说明:clipLimit颜色对比度的阈值, titleGridSize进行像素均衡化的网格大小,即在多少网格下进行直方图的均衡化操作
直方图均衡化:一般可以用来提升图片的亮度, 在上面一节中,我们可以看出在150-200之间所占的频数特别的大,频数均衡化指的是让频数的分布看起来更加均匀一些

主要实现的手段

上图中的左边的图是原始数据, 右边的图是进行函数映射后的灰度值
首先对各个灰度值做频数统计,计算其概率,根据像素的灰度值计算出累积概率,最后将累积概率 * (255-0) 做为函数映射后的灰度值,
这样做的目的,可以使得灰度值之间的间隔更小,即一些频数较大的灰度值补充给了频数较小的灰度值,从而实现了灰度值的均衡化
代码:
第一步:读入图片
第二步:使用cv2.equalizeHist(img)均衡化像素
第三步:使用plt.hist 画出均衡化的直方图
第四步:使用plt.imshow 画出均衡化后的图像
import cv2
import numpy as np
import matplotlib.pyplot as plt # 第一步:读入图片
img = cv2.imread('cat.jpg', 0) # 第二步: 使用cv2.equalizeHist实现像素点的均衡化
ret = cv2.equalizeHist(img) # 第三步:使用plt.hist绘制像素直方图
plt.subplot(121)
plt.hist(img.ravel(), 256)
plt.subplot(122)
plt.hist(ret.ravel(), 256)
plt.show() # 第四步:使用cv2.imshow()绘值均衡化的图像
cv2.imshow('ret', np.hstack((img, ret)))
cv2.waitKey(0)


这种全局的均衡化也会存在一些问题,由于整体亮度的提升,也会使得局部图像的细节变得模糊,因为我们需要进行分块的局部均衡化操作
代码:
第一步:使用cv2.createCLAHE(clipLimit=2.0, titleGridSize=(8, 8)) 实例化均衡直方图函数
第二步:使用.apply进行均衡化操作
第三步:进行画图操作
# 使用自适应直方图均衡化
# 第一步:实例化自适应直方图均衡化函数
clahe = cv2.createCLAHE(clipLimit=2.0,
tileGridSize=(8, 8)) # 第二步:进行自适应直方图均衡化
clahe = clahe.apply(img) # 第三步:进行图像的展示
cv2.imshow('imgs', np.hstack((img, ret, clahe)))
cv2.waitKey(0)
cv2.destroyAllWindows()
可以看出自适应均衡化没有使得人物脸部的细节消失
机器学习进阶-直方图与傅里叶变化-直方图均衡化 1.cv2.equalizeHist(进行直方图均衡化) 2. cv2.createCLAHA(用于生成自适应均衡化图像)的更多相关文章
- 机器学习进阶-直方图与傅里叶变换-图像直方图 1.cv2.calc(生成图像的像素频数分布(直方图))
1. cv2.calc([img], [0], mask, [256], [0, 256]) # 用于生成图像的频数直方图 参数说明: [img]表示输入的图片, [0]表示第几个通道, mask表 ...
- 机器学习进阶-直方图与傅里叶变换-傅里叶变换(高低通滤波) 1.cv2.dft(进行傅里叶变化) 2.np.fft.fftshift(将低频移动到图像的中心) 3.cv2.magnitude(计算矩阵的加和平方根) 4.np.fft.ifftshift(将低频和高频移动到原来位置) 5.cv2.idft(傅里叶逆变换)
1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 ...
- 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...
- 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...
- 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)
1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op = cv2.MO ...
- 机器学习进阶-目标跟踪-KCF目标跟踪方法 1.cv2.multiTracker_create(构造选框集合) 2. cv2.TrackerKCF_create(获得KCF追踪器) 3. cv2.resize(变化图像大小) 4.cv2.selectROI(在图像上框出选框)
1. tracker = cv2.multiTracker_create() 获得追踪的初始化结果 2.cv2.TrackerKCF_create() 获得KCF追踪器 3.cv2.resize(fr ...
- 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)
1. cv2.dnn.readNetFromCaffe(prototxt, model) 用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...
- 机器学习进阶-光流估计 1.cv2.goodFeaturesToTrack(找出光流估计所需要的角点) 2.cv2.calcOpticalFlowPyrLK(获得光流检测后的角点位置) 3.cv2.add(进行像素点的加和)
1.cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params) 用于获得光流估计所需要的角点参数说明:old_gray表示输入图片, ...
- 机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的 ...
随机推荐
- bzoj5050: 建造摩天楼
Description 属于小Q管辖的n座摩天楼从左往右排成一排,编号依次为1到n,第i座摩天楼的高度为h_i.小Q会进行m次以下两种 操作之一: 2 l r,询问h_l+h_{l+1}+...+h_ ...
- .NET使用Task动态创建多任务多线程并行程序计算Redis集群keys计算
Task是一个很好用的多任务处理类,并且通过Task可以对任务进行很好的控制. 下面将通过代码实现Redis集群在使用IServer.keys时通过多任务对多个服务器示例进行并行计算,并对返回key做 ...
- jquery中each()的三种遍历用法
1.选择器+遍历 $('div').each(function (i){ i就是索引值 this 表示获取遍历每一个dom对象 }); 2.选择器+遍历 $('div').each(function ...
- 学习笔记之Python调试 - pdb
python调试神器——pdb - 软谋python https://mp.weixin.qq.com/s/w3Xw8I_zh7MFq2dx5kdQXw 优秀开发者必备技能包:Python调试器 - ...
- 【转】XP_cmdshell存储过程
原文地址:http://www.cnblogs.com/love_study/archive/2010/03/02/1676583.html 一 .简介 xp_cmdshell 扩展存储过程将命令字符 ...
- [UE4]创建动画的3中方法
一.基于现有动画的骨骼,从头开始创建一个全新的动画.(不推荐) 选中左边的骨骼节点做旋转变化. 调整完成了别忘记点击添加“Key”以创建一个关键帧,然后再保存. 二.基于当前动画的姿势创建一个动画.( ...
- SCCM2012 R2实战系列之十:解决WDS服务无法启动问题(错误1067:进程意外终止)
在操作系统分发(OSD)之前需要开启PXE服务,然后会自动在SCCM服务器安装Windows Deployment Service. 但是之前在一次项目过程当中发现启用PXE服务后WDS无法启动,本以 ...
- WebSocket 跨域
http://www.cnblogs.com/joeymary/p/5259464.html
- async方法:async+await
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- SSH2 No Session found for current thread原因
Hibernate4 与 spring3 集成之后, 如果在取得session 的地方使用了getCurrentSession, 可能会报一个错:“No Session found for curre ...