算法练习_图的连通性问题(JAVA)
一.问题
1.问题描述:
有n个点(1...n),输入整数对(8,9),表示8,9点之间存在相互的连接关系。
动态连通性问题--编写一段程序过滤掉所以无意义的整数对,即为在不破坏图连通性的前提下,以最简单的方式表示图的连通性。2.实现方案:设计数据结构保存已经存在的整数对,并且用他们来判断新数对是否满足新相连关系。
3.实例应用:网络连接问题,电子触电设计,社交网络关系等等
二.解决
1.定义问题--设计api
public class UF//(类名大写) | ||
(构造方法) | UN(int N) | 初始化0-N个触点 |
void | union(int p,int q) | 在两点之间建立连接 |
int | find(int p) | 在触点集中找到p |
boolean | connected(int p,int q) | 判断触点p,q是否相连 |
int | count() | 连通分量的计数 |
2.方案设计
<一>两个变量
count--用于连通分量的计数&&id[]--数组下标表示连通分量
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
初始化时下标默认为自身下标
在输入连通关系后(3,4),(5,6)
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | 1 | 2 | 4 | 4 | 6 | 6 | 7 | 8 | 9 |
将所以id[3]相同的下标修改为id[4]
从而表示数组的相连关系
1.quick-find
public int find(int p){
return id[p];
}
//对两点进行连接
public void union(int p,int q){ int pid=find(p);
int qid=find(q); if(pid==qid)return;//直接return用于方法的推出 for(int i=0;i<id.length;i++)
if(id[i]==pid)id[i]=qid; count--;
}
每次union需要访问数组(N+3)到(2N+1)次
2.quick-union
private int find(int p){
while(p!=id[p]){//找出根结点
p=id[p];
}
return p;
}
private void union(int p,int q){
int prot=find(p);
int qrot=find(q);
if(qrot==prot)return;
id[qrot]=prot;
count--;
}
3.union-find算法,加权
public class UF { private int[] id;
private int[] sz;
private int count; //初始化
public UF(int N){
count=N;
id=new int[N];
sz=new int[N];
for(int i=0;i<N;i++){
id[i]=i;
sz[i]=1;
}
} private int find(int p){
while(p!=id[p]){//找出根结点
p=id[p];
}
return p;
}
private void union(int p,int q){
int i=find(p);
int j=find(q); if(i==j)return;
if(sz[i]<sz[j]){
id[i]=j;sz[j]+=sz[i];
}else{
id[j]=i;sz[i]+=sz[j];
}
count--;
} //对联通分量进行计数
public int count(){return count;} //判断是否连接
public boolean connected(int p,int q){
return find(p)==find(q);
}
}
算法练习_图的连通性问题(JAVA)的更多相关文章
- java数据结构_笔记(5)_图的算法
图的算法 1 图的遍历图的遍历就是从图中某个顶点出发,按某种方法对图中所有顶点访问且仅访问一次.遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础. 2 深度优先遍历从图中某个顶点V 出发 ...
- 数据结构-图-Java实现:有向图 图存储(邻接矩阵),最小生成树,广度深度遍历,图的连通性,最短路径1
import java.util.ArrayList; import java.util.List; // 模块E public class AdjMatrixGraph<E> { pro ...
- Kosaraju 算法检测有向图的强连通性
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...
- Tarjan算法:求解图的割点与桥(割边)
简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边 ...
- Victoria的舞会2——图的连通性及连通分量
[Vijos1022]]Victoria的舞会2 Description Victoria是一位颇有成就的艺术家,他因油画作品<我爱北京天安门>闻名于世界.现在,他为了报答帮助他的同行们, ...
- 算法基础_递归_求杨辉三角第m行第n个数字
问题描述: 算法基础_递归_求杨辉三角第m行第n个数字(m,n都从0开始) 解题源代码(这里打印出的是杨辉三角某一层的所有数字,没用大数,所以有上限,这里只写基本逻辑,要符合题意的话,把循环去掉就好) ...
- 从上面的集合框架图可以看到,Java 集合框架主要包括两种类型的容器,一种是集合(Collection),存储一个元素集合,另一种是图(Map),存储键/值对映射
从上面的集合框架图可以看到,Java 集合框架主要包括两种类型的容器,一种是集合(Collection),存储一个元素集合,另一种是图(Map),存储键/值对映射.Collection 接口又有 3 ...
- 图的连通性问题的小结 (双连通、2-SAT)
图的连通性问题包括: 1.强连通分量. 2.最小点基和最小权点基. 3.双连通. 4.全局最小割. 5.2-SAT 一.强连通分量 强连通分量很少单独出题,一般都是把求强连通分量作为缩点工具. 有三种 ...
- POJ 2513 - Colored Sticks - [欧拉路][图的连通性][字典树]
题目链接: http://poj.org/problem?id=2513 http://bailian.openjudge.cn/practice/2513?lang=en_US Time Limit ...
随机推荐
- blog (后续更新)
设计Model(设计数据库) from django.db import models # Create your models here. class BlogsPost(models.Model) ...
- webstorm 常用快捷键
webstorm应该是目前最强的js编辑器了,结合sublime text可以很效率的开发项目.今天整理了一些webstorm比较实用的快捷键: Ctrl+/ 或 Ctrl+Shift+/ 注释(// ...
- ERwin入门
1.菜单介绍 2.选择建模语言符号
- nginx代理TCP端口
1.升级nginx 版本至1.9.0以上 升级流程参考 nginx平滑升级 2.配置编译的时候需要加上 ./configure --prefix=/usr/local/nginx --user=www ...
- BZOJ 4390: [Usaco2015 dec]Max Flow
4390: [Usaco2015 dec]Max Flow Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 113[Submi ...
- css之IE透明度
原文链接:http://caibaojian.com/rgba-filter.html .bg{ /*Filter for IE8 */ -ms-filter: "progid:DXImag ...
- 12,13 Proxy和Reflect
Proxy和Reflect Proxy(代理) Proxy用于修改某些操作的默认行为,等同于在语言层面做出修改,所以属于一种"元编程"(meta programming),即对编程 ...
- PHP安装kafka插件
在工作中我们经常遇到需要给php安装插件,今天把php安装kafka的插件的步骤整理下,仅供大家参考 1:需要先安装librdkafka git clone https://github.com/ed ...
- Download Excel file with Angular
源码连接(编写中) 用Angular下载后台返回的Excel文件,用Blob实现,引用FileSaver.js 后台C#代码: [WebMethod] public static byte[] Cal ...
- js 刷新页面window.location.reload();
Javascript刷新页面的几种方法:1 history.go(0)2 window.location.reload() window.location.reload(true) 3 ...