2017 JUST Programming Contest 2.0 题解
【题目链接】
首先,$n>m$或$k>m$或$k>n$就无解。
设$p = \frac{A}{B}$,$ans = C_{n - 1}^{k - 1}{\left( {\frac{A}{B}} \right)^{k}}{\left( {\frac{B-A}{B}} \right)^{n - k}} = \frac{{\left( {n - 1} \right)! \times {A^k} \times {{\left( {B - A} \right)}^{n - k}}}}{{\left( {k - 1} \right)! \times \left( {n - k} \right)! \times {B^n}}}$。令分子为$p$,分母为$q$,最终的答案为$p$*($q$的逆元)。
#include <bits/stdc++.h>
using namespace std; const long long mod = 1e9 + 7;
const int maxn = 2e5 + 10;
long long f[maxn]; long long m, n, k;
char s[maxn]; long long qpow(long long a, long long b) {
long long res = 1LL;
a = a % mod;
while(b) {
if(b & 1) res = (res * a) % mod;
b = b / 2;
a = (a * a) % mod;
}
return res;
} long long extend_gcd(long long a,long long b,long long &x,long long &y)
{
if(a==0&&b==0) return -1;//无最大公约数
if(b==0){x=1;y=0;return a;}
long long d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
//*********求逆元素*******************
//ax = 1(mod n)
long long mod_reverse(long long a,long long n)
{
long long x,y;
long long d=extend_gcd(a,n,x,y);
if(d==1) return (x%n+n)%n;
else return -1;
} void init() {
f[0] = 1LL;
for(long long i = 1; i <= 100000; i ++) {
f[i] = (f[i - 1] * i) % mod;
}
} int main() {
init();
cin >> m >> n >> k >> s;
if(n > m || k > m || k > n) {
printf("0\n");
return 0;
}
if(s[0] == '1' && n == k) {
printf("1\n");
return 0;
}
if(s[0] == '1') {
printf("0\n");
return 0;
}
if(s[0] == '0' && s[2] == '0' && s[3] == '0' && s[4] == '0') {
printf("0\n");
return 0;
} long long A = 0;
long long B = 1000LL;
for(int i = 2; i <= 4; i ++) {
A = A * 10LL + s[i] - '0';
} long long p, q; p = f[n - 1] * qpow(A, k) % mod;
p = p * qpow(B - A, n - k) % mod; q = f[k - 1] * f[n - k] % mod;
q = q * qpow(B, n) % mod; long long x = p * mod_reverse(q, mod) % mod;
printf("%lld\n", x);
return 0;
}
B - So You Think You Can Count?
设$dp[i]$表示以$i$为结尾的方案数,每个位置最多往前扫$10$位。
#include <bits/stdc++.h>
using namespace std; const long long mod = 1e9 + 7;
const int maxn = 1e5 + 10;
char s[maxn];
int n;
long long dp[maxn]; long long DP(int x) {
if(x < 0) return 1LL;
return dp[x];
} int main() {
scanf("%d", &n);
scanf("%s", s);
int len = strlen(s);
dp[0] = 1LL;
for(int i = 1; i < len; i ++) {
int tmp[20];
for(int j = 0; j <= 9; j ++) {
tmp[j] = 0;
}
for(int pre = i; pre >= 0; pre --) {
if(tmp[s[pre] - '0']) break;
tmp[s[pre] - '0'] = 1;
dp[i] = (dp[i] + DP(pre - 1)) % mod;
}
}
printf("%lld\n", dp[len - 1]);
return 0;
}
最短路,数据有点水,没把spfa卡住。
#include <bits/stdc++.h>
using namespace std; const int maxn = 2e5 + 10; int S, T, n, m;
char name[maxn][25];
int h[maxn], nx[maxn], to[maxn], c[maxn], sz;
int t1[30], t2[30]; int cost(int x, int y) {
memset(t1, 0, sizeof t1);
memset(t2, 0, sizeof t2); for(int i = 0; name[x][i]; i ++){
if(name[x][i] >= 'a' && name[x][i] <= 'z') {
t1[name[x][i] - 'a'] ++;
}
if(name[x][i] >= 'A' && name[x][i] <= 'Z') {
t1[name[x][i] - 'A'] ++;
}
} for(int i = 0; name[y][i]; i ++){
if(name[y][i] >= 'a' && name[y][i] <= 'z') {
t2[name[y][i] - 'a'] ++;
}
if(name[y][i] >= 'A' && name[y][i] <= 'Z') {
t2[name[y][i] - 'A'] ++;
}
} int num = 0;
for(int i = 0; i < 26; i ++) {
if(t1[i] && t2[i]) num ++;
}
return num;
} void add(int x, int y, int z) {
to[sz] = y;
c[sz] = z;
nx[sz] = h[x];
h[x] = sz++;
} int dis[maxn], f[maxn]; void spfa() {
for(int i = 1 ;i <= n; i ++) {
f[i] = 0;
dis[i] = 0x7FFFFFFF;
}
queue<int> Q;
Q.push(S);
f[S] = 1;
dis[S] = 0;
while(!Q.empty()) {
int top = Q.front();
Q.pop();
f[top] = 0;
for(int i = h[top]; i != -1; i = nx[i]) {
if(dis[top] + c[i] < dis[to[i]]) {
dis[to[i]] = dis[top] + c[i];
if(f[to[i]] == 0) {
f[to[i]] = 1;
Q.push(to[i]);
}
}
}
}
} int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++) {
scanf("%s", name[i]);
h[i] = -1;
}
for(int i = 1; i <= m; i ++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v, cost(u, v));
add(v, u, cost(u, v));
}
scanf("%d%d", &S, &T);
spfa();
printf("%d\n", dis[T]);
return 0;
}
模拟。
#include <bits/stdc++.h>
using namespace std; const int maxn = 1e6 + 10;
char s[maxn]; int main() {
int T;
scanf("%d", &T);
while(T --) {
scanf("%s", s); int num1=0, num2=0, num3=0;
for(int i = 0; s[i];i ++) {
if(s[i]>='a'&&s[i]<='z') num1++;
else if(s[i]>='A'&&s[i]<='Z') num1++;
else if(s[i]>='0'&&s[i]<='9') num2++;
else if(s[i] =='!' || s[i] =='?'||s[i] == '@') {
num3++;
}
}
if(num1 < 4) {
printf("The last character must be a letter.\n");
continue;
}
if(num2 < 4) {
printf("The last character must be a digit.\n");
continue;
}
if(num3 < 2) {
printf("The last character must be a symbol.\n");
continue;
}
printf("The last character can be any type.\n");
}
return 0;
}
由于验证的复杂度只有$O(26)$,因此可以枚举答案。
#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + 10;
int n, m;
char s[maxn];
long long f[maxn]; int main() {
scanf("%s", s);
for(int i = 0; s[i]; i ++) {
f[s[i] - 'a'] ++;
}
long long ans = -1;
long long mn = -1;
for(long long i = 2; i <= 300000; i ++) {
long long tmp = 0;
for(int j = 0; j < 26; j ++) {
tmp = tmp + (f[j] % i) * f[j];
}
if(mn == -1 || tmp < mn) {
mn = tmp;
ans = i;
}
}
printf("%lld\n", ans);
return 0;
}
二分查找。
#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + 10;
int n, m;
int a[maxn]; int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) scanf("%d", &a[i]);
sort(a + 1, a + 1 + n);
scanf("%d", &m);
while(m --) {
int x;
scanf("%d", &x);
int L = 1, R = n, pos = -1;
while(L <= R) {
int mid = (L + R) / 2;
if(a[mid] >= x) pos = mid, R = mid - 1;
else L = mid + 1;
}
if(pos == -1) printf("Dr. Samer cannot take any offer :(.\n");
else printf("%d\n", a[pos]);
}
return 0;
}
模拟。
#include <bits/stdc++.h>
using namespace std; int main() {
int n, m;
cin>> n>>m;
if(m % n == 0) printf("YES\n");
else printf("NO\n");
return 0;
}
这题为单调栈经典问题,但是由于数值范围只有$50$,因此可以枚举数值。
#include <bits/stdc++.h>
using namespace std; const int maxn = 2e5 + 10;
int n, m;
int a[maxn];
int b[maxn];
int num[maxn]; int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
scanf("%d", &a[i]);
}
for(int i = 0; i<= 100; i ++) num[i] = 200000;
for(int j = n; j>=1; j--) {
b[j] = 200000;
for(int k = 50; k >= a[j] + 1; k--){
if(num[k] < b[j]) b[j] = num[k];
}
num[a[j]] = j;
if(b[j] != 200000) b[j] = a[b[j]];
else b[j] = -1;
}
for(int i =1 ;i <= n; i ++) {
printf("%d ", b[i]);
}
return 0;
}
I - Husam and the Broken Present 1
对主对角线开根号来求解。
#include <bits/stdc++.h>
using namespace std; int main() {
int n;
cin>> n;
int x;
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= n; j++){
cin>>x;
if(i == j){
int num = sqrt(1.0 * x);
while(num * num > x) num--;
while(num*num<x)num++;
printf("%d ", num);
} }
}
return 0;
}
J - Husam and the Broken Present 2
先删除被包含的那些数组,剩下的可以进行状压$dp$来决策放置顺序。$dp[st][v]$表示有$st$状态里面的子数组已经放置好了,最后放的是$v$的最小花费,和TSP是一样的问题。
#include <bits/stdc++.h>
using namespace std; const int maxn = 1000;
vector<int> vec[maxn], t[maxn];
int cost[20][20]; int n;
int dp[70000][17]; int han(vector<int>& a, vector<int>& b) {
// a 是否在 b 中
if(b.size() < a.size()) return 0;
for(int i = 0; i < b.size(); i ++) {
int L = i, R = i + a.size() - 1;
if(R >= b.size()) break;
int fail = 0;
for(int j = 0; j < a.size(); j ++) {
if(a[j] != b[L + j]) fail = 1;
}
if(fail == 0) return 1;
}
return 0;
} int cal(int x, int y) {
// x 后面 接 y
int res = 0;
for(int i = 0; i < t[x].size(); i ++) {
if(t[x].size() - i > t[y].size()) continue;
int fail = 0;
for(int j = i; j < t[x].size(); j ++) {
if(t[x][j] != t[y][j - i]) fail = 1;
}
//printf("!!! %d, %d\n", i, fail);
if(fail == 0) {
res = t[x].size() - i;
break;
} }
return t[y].size() - res;
} bool cmp(const vector<int> &a, const vector<int> &b) {
return a.size() > b.size();
} int main() {
scanf("%d", &n);
for(int i = 0; i < n; i ++) {
int x;
scanf("%d", &x);
while(x--){
int p;
scanf("%d", &p);
vec[i].push_back(p);
}
}
sort(vec, vec + n, cmp);
int sz = 0;
t[sz++] = vec[0];
for(int i = 1; i < n; i ++) {
int fail = 0;
for(int j = 0; j < sz; j ++) {
if(han(vec[i], t[j])) {
fail = 1;
break;
}
}
if(fail) continue;
t[sz ++] = vec[i];
} n = sz; /*
for(int i = 0; i < n; i ++) {
for(int j = 0; j < t[i].size(); j ++) {
cout << t[i][j] << " ";
}
cout << endl;
}
*/ for(int i = 0; i < n; i ++) {
for(int j = 0; j < n; j ++) {
if(i == j) continue;
cost[i][j] = cal(i, j);
}
} for(int st = 0; st < (1 << n); st ++) {
for(int i = 0; i < n; i ++) {
dp[st][i] = 200000;
}
}
for(int i = 0; i < n; i ++) {
dp[1 << i][i] = t[i].size();
} for(int st = 1; st < (1 << n); st ++) {
for(int pre = 0; pre < n; pre ++) {
if(((1 << pre) & st) == 0) continue;
for(int now = 0; now < n; now ++) {
if((1 << now) & st) continue;
dp[st | (1 << now)][now] = min(dp[st | (1 << now)][now], dp[st][pre] + cost[pre][now]);
}
}
} int ans = dp[(1 << n) - 1][0];
for(int i = 0; i < n; i ++) {
ans = min(ans, dp[(1 << n) - 1][i]);
}
printf("%d\n", ans); return 0;
} /*
3
2 1 2
4 3 4 5 6
3 2 3 4 */
2017 JUST Programming Contest 2.0 题解的更多相关文章
- gym101343 2017 JUST Programming Contest 2.0
A.On The Way to Lucky Plaza (数论)题意:m个店 每个店可以买一个小球的概率为p 求恰好在第m个店买到k个小球的概率 题解:求在前m-1个店买k-1个球再*p ...
- 2018 JUST Programming Contest 1.0 题解
题目链接 gym101778 Problem A 转化成绝对值之后算一下概率.这个题有点像 2018 ZOJ Monthly March Problem D ? 不过那个题要难一些~ #includ ...
- gym101532 2017 JUST Programming Contest 4.0
台州学院ICPC赛前训练5 人生第一次ak,而且ak得还蛮快的,感谢队友带我飞 A 直接用claris的模板啊,他模板确实比较强大,其实就是因为更新的很快 #include<bits/stdc+ ...
- 2017 JUST Programming Contest 3.0 B. Linear Algebra Test
B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input o ...
- 2017 JUST Programming Contest 3.0 I. Move Between Numbers
I. Move Between Numbers time limit per test 2.0 s memory limit per test 256 MB input standard input ...
- 2017 JUST Programming Contest 3.0 D. Dice Game
D. Dice Game time limit per test 1.0 s memory limit per test 256 MB input standard input output stan ...
- 2017 JUST Programming Contest 3.0 H. Eyad and Math
H. Eyad and Math time limit per test 2.0 s memory limit per test 256 MB input standard input output ...
- 2017 JUST Programming Contest 3.0 K. Malek and Summer Semester
K. Malek and Summer Semester time limit per test 1.0 s memory limit per test 256 MB input standard i ...
- 2017 JUST Programming Contest 3.0 E. The Architect Omar
E. The Architect Omar time limit per test 1.0 s memory limit per test 256 MB input standard input ou ...
随机推荐
- Flash 解题报告
Flash Description 给你一颗树,需要把每个点染色,每个点染色时间为\(t_i\),要求同时染色的点的集合为树的独立集,最小化染色结束时间之和. 其实题面蛮有趣的♂ HINT \(n\l ...
- luogu1081 [NOIp2012]开车旅行 (STL::multiset+倍增)
先用不管什么方法求出来从每个点出发,A走到哪.B走到哪(我写了一个很沙雕的STL) 然后把每个点拆成两个点,分别表示A从这里出发和B从这里出发,然后连边是要A连到B.B连到A.边长就是这次走的路径长度 ...
- Java 使用 Enum 实现单例模式
在这篇文章中介绍了单例模式有五种写法:懒汉.饿汉.双重检验锁.静态内部类.枚举.如果涉及到反序列化创建对象时推荐使用枚举的方式来实现单例,因为Enum能防止反序列化时重新创建新的对象.本文介绍 Enu ...
- Hadoop生态圈-zookeeper的API用法详解
Hadoop生态圈-zookeeper的API用法详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.测试前准备 1>.开启集群 [yinzhengjie@s101 ~] ...
- Java基础-零拷贝技术应用案例
Java基础-零拷贝技术应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 零拷贝技术在Hadoop生态圈中很多组件得到应用,典型的比如kafka组件,它就很成功的应用了零拷贝 ...
- git 查看一个分支是否被合并过
1.查看该分支的提交历史 git log 分支名 2.git log master |grep comitid 如果包含,就证明已经合并过 3.git branch -d 分支名,如果报错,就是没合并 ...
- Linux - awk 文本处理工具二
awk 判断格式 awk '{print ($1>$2)?"第一排"$1:"第二排"$2}' # 条件判断 括号代表if语句判断 "?" ...
- shell test条件判断
test 条件判断 # 符号 [ ] 等同 test命令 test -lt # 判断大小 echo $? # 查看上句test命令返回状态 # 结果0为真,1为假 test -n "hel ...
- 线性筛的同时得到欧拉函数 (KuangBin板子)
线性筛的思想:每个被筛的数是通过它最小的质因子所筛去的. 这种思想保证了每个数只会被筛一次,从而达到线性.并且,这个思想实现起来非常巧妙(见代码注释)! 因为线性筛的操作中用到了倍数的关系去实现,因此 ...
- HDU 1501 Zipper 字符串
题目大意:输入有一个T,表示有T组测试数据,然后输入三个字符串,问第三个字符串能否由第一个和第二个字符串拼接而来,拼接的规则是第一个和第二个字符串在新的字符串中的前后的相对的顺序不能改变,问第三个字符 ...