题目链接

A - On The Way to Lucky Plaza

首先,$n>m$或$k>m$或$k>n$就无解。

设$p = \frac{A}{B}$,$ans = C_{n - 1}^{k - 1}{\left( {\frac{A}{B}} \right)^{k}}{\left( {\frac{B-A}{B}} \right)^{n - k}} = \frac{{\left( {n - 1} \right)! \times {A^k} \times {{\left( {B - A} \right)}^{n - k}}}}{{\left( {k - 1} \right)! \times \left( {n - k} \right)! \times {B^n}}}$。令分子为$p$,分母为$q$,最终的答案为$p$*($q$的逆元)。

#include <bits/stdc++.h>
using namespace std; const long long mod = 1e9 + 7;
const int maxn = 2e5 + 10;
long long f[maxn]; long long m, n, k;
char s[maxn]; long long qpow(long long a, long long b) {
long long res = 1LL;
a = a % mod;
while(b) {
if(b & 1) res = (res * a) % mod;
b = b / 2;
a = (a * a) % mod;
}
return res;
} long long extend_gcd(long long a,long long b,long long &x,long long &y)
{
if(a==0&&b==0) return -1;//无最大公约数
if(b==0){x=1;y=0;return a;}
long long d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
//*********求逆元素*******************
//ax = 1(mod n)
long long mod_reverse(long long a,long long n)
{
long long x,y;
long long d=extend_gcd(a,n,x,y);
if(d==1) return (x%n+n)%n;
else return -1;
} void init() {
f[0] = 1LL;
for(long long i = 1; i <= 100000; i ++) {
f[i] = (f[i - 1] * i) % mod;
}
} int main() {
init();
cin >> m >> n >> k >> s;
if(n > m || k > m || k > n) {
printf("0\n");
return 0;
}
if(s[0] == '1' && n == k) {
printf("1\n");
return 0;
}
if(s[0] == '1') {
printf("0\n");
return 0;
}
if(s[0] == '0' && s[2] == '0' && s[3] == '0' && s[4] == '0') {
printf("0\n");
return 0;
} long long A = 0;
long long B = 1000LL;
for(int i = 2; i <= 4; i ++) {
A = A * 10LL + s[i] - '0';
} long long p, q; p = f[n - 1] * qpow(A, k) % mod;
p = p * qpow(B - A, n - k) % mod; q = f[k - 1] * f[n - k] % mod;
q = q * qpow(B, n) % mod; long long x = p * mod_reverse(q, mod) % mod;
printf("%lld\n", x);
return 0;
}

B - So You Think You Can Count?

设$dp[i]$表示以$i$为结尾的方案数,每个位置最多往前扫$10$位。

#include <bits/stdc++.h>
using namespace std; const long long mod = 1e9 + 7;
const int maxn = 1e5 + 10;
char s[maxn];
int n;
long long dp[maxn]; long long DP(int x) {
if(x < 0) return 1LL;
return dp[x];
} int main() {
scanf("%d", &n);
scanf("%s", s);
int len = strlen(s);
dp[0] = 1LL;
for(int i = 1; i < len; i ++) {
int tmp[20];
for(int j = 0; j <= 9; j ++) {
tmp[j] = 0;
}
for(int pre = i; pre >= 0; pre --) {
if(tmp[s[pre] - '0']) break;
tmp[s[pre] - '0'] = 1;
dp[i] = (dp[i] + DP(pre - 1)) % mod;
}
}
printf("%lld\n", dp[len - 1]);
return 0;
}

C - MRT Map

最短路,数据有点水,没把spfa卡住。

#include <bits/stdc++.h>
using namespace std; const int maxn = 2e5 + 10; int S, T, n, m;
char name[maxn][25];
int h[maxn], nx[maxn], to[maxn], c[maxn], sz;
int t1[30], t2[30]; int cost(int x, int y) {
memset(t1, 0, sizeof t1);
memset(t2, 0, sizeof t2); for(int i = 0; name[x][i]; i ++){
if(name[x][i] >= 'a' && name[x][i] <= 'z') {
t1[name[x][i] - 'a'] ++;
}
if(name[x][i] >= 'A' && name[x][i] <= 'Z') {
t1[name[x][i] - 'A'] ++;
}
} for(int i = 0; name[y][i]; i ++){
if(name[y][i] >= 'a' && name[y][i] <= 'z') {
t2[name[y][i] - 'a'] ++;
}
if(name[y][i] >= 'A' && name[y][i] <= 'Z') {
t2[name[y][i] - 'A'] ++;
}
} int num = 0;
for(int i = 0; i < 26; i ++) {
if(t1[i] && t2[i]) num ++;
}
return num;
} void add(int x, int y, int z) {
to[sz] = y;
c[sz] = z;
nx[sz] = h[x];
h[x] = sz++;
} int dis[maxn], f[maxn]; void spfa() {
for(int i = 1 ;i <= n; i ++) {
f[i] = 0;
dis[i] = 0x7FFFFFFF;
}
queue<int> Q;
Q.push(S);
f[S] = 1;
dis[S] = 0;
while(!Q.empty()) {
int top = Q.front();
Q.pop();
f[top] = 0;
for(int i = h[top]; i != -1; i = nx[i]) {
if(dis[top] + c[i] < dis[to[i]]) {
dis[to[i]] = dis[top] + c[i];
if(f[to[i]] == 0) {
f[to[i]] = 1;
Q.push(to[i]);
}
}
}
}
} int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++) {
scanf("%s", name[i]);
h[i] = -1;
}
for(int i = 1; i <= m; i ++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v, cost(u, v));
add(v, u, cost(u, v));
}
scanf("%d%d", &S, &T);
spfa();
printf("%d\n", dis[T]);
return 0;
}

D - Husam's Bug

模拟。

#include <bits/stdc++.h>
using namespace std; const int maxn = 1e6 + 10;
char s[maxn]; int main() {
int T;
scanf("%d", &T);
while(T --) {
scanf("%s", s); int num1=0, num2=0, num3=0;
for(int i = 0; s[i];i ++) {
if(s[i]>='a'&&s[i]<='z') num1++;
else if(s[i]>='A'&&s[i]<='Z') num1++;
else if(s[i]>='0'&&s[i]<='9') num2++;
else if(s[i] =='!' || s[i] =='?'||s[i] == '@') {
num3++;
}
}
if(num1 < 4) {
printf("The last character must be a letter.\n");
continue;
}
if(num2 < 4) {
printf("The last character must be a digit.\n");
continue;
}
if(num3 < 2) {
printf("The last character must be a symbol.\n");
continue;
}
printf("The last character can be any type.\n");
}
return 0;
}

E - Abdalrahman Ali Bugs

由于验证的复杂度只有$O(26)$,因此可以枚举答案。

#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + 10;
int n, m;
char s[maxn];
long long f[maxn]; int main() {
scanf("%s", s);
for(int i = 0; s[i]; i ++) {
f[s[i] - 'a'] ++;
}
long long ans = -1;
long long mn = -1;
for(long long i = 2; i <= 300000; i ++) {
long long tmp = 0;
for(int j = 0; j < 26; j ++) {
tmp = tmp + (f[j] % i) * f[j];
}
if(mn == -1 || tmp < mn) {
mn = tmp;
ans = i;
}
}
printf("%lld\n", ans);
return 0;
}

F - Certifications

二分查找。

#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + 10;
int n, m;
int a[maxn]; int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) scanf("%d", &a[i]);
sort(a + 1, a + 1 + n);
scanf("%d", &m);
while(m --) {
int x;
scanf("%d", &x);
int L = 1, R = n, pos = -1;
while(L <= R) {
int mid = (L + R) / 2;
if(a[mid] >= x) pos = mid, R = mid - 1;
else L = mid + 1;
}
if(pos == -1) printf("Dr. Samer cannot take any offer :(.\n");
else printf("%d\n", a[pos]);
}
return 0;
}

G - In the Chairman's office

模拟。

#include <bits/stdc++.h>
using namespace std; int main() {
int n, m;
cin>> n>>m;
if(m % n == 0) printf("YES\n");
else printf("NO\n");
return 0;
}

H - Give Me This Pizza

这题为单调栈经典问题,但是由于数值范围只有$50$,因此可以枚举数值。

#include <bits/stdc++.h>
using namespace std; const int maxn = 2e5 + 10;
int n, m;
int a[maxn];
int b[maxn];
int num[maxn]; int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
scanf("%d", &a[i]);
}
for(int i = 0; i<= 100; i ++) num[i] = 200000;
for(int j = n; j>=1; j--) {
b[j] = 200000;
for(int k = 50; k >= a[j] + 1; k--){
if(num[k] < b[j]) b[j] = num[k];
}
num[a[j]] = j;
if(b[j] != 200000) b[j] = a[b[j]];
else b[j] = -1;
}
for(int i =1 ;i <= n; i ++) {
printf("%d ", b[i]);
}
return 0;
}

I - Husam and the Broken Present 1

对主对角线开根号来求解。

#include <bits/stdc++.h>
using namespace std; int main() {
int n;
cin>> n;
int x;
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= n; j++){
cin>>x;
if(i == j){
int num = sqrt(1.0 * x);
while(num * num > x) num--;
while(num*num<x)num++;
printf("%d ", num);
} }
}
return 0;
}

J - Husam and the Broken Present 2

先删除被包含的那些数组,剩下的可以进行状压$dp$来决策放置顺序。$dp[st][v]$表示有$st$状态里面的子数组已经放置好了,最后放的是$v$的最小花费,和TSP是一样的问题。

#include <bits/stdc++.h>
using namespace std; const int maxn = 1000;
vector<int> vec[maxn], t[maxn];
int cost[20][20]; int n;
int dp[70000][17]; int han(vector<int>& a, vector<int>& b) {
// a 是否在 b 中
if(b.size() < a.size()) return 0;
for(int i = 0; i < b.size(); i ++) {
int L = i, R = i + a.size() - 1;
if(R >= b.size()) break;
int fail = 0;
for(int j = 0; j < a.size(); j ++) {
if(a[j] != b[L + j]) fail = 1;
}
if(fail == 0) return 1;
}
return 0;
} int cal(int x, int y) {
// x 后面 接 y
int res = 0;
for(int i = 0; i < t[x].size(); i ++) {
if(t[x].size() - i > t[y].size()) continue;
int fail = 0;
for(int j = i; j < t[x].size(); j ++) {
if(t[x][j] != t[y][j - i]) fail = 1;
}
//printf("!!! %d, %d\n", i, fail);
if(fail == 0) {
res = t[x].size() - i;
break;
} }
return t[y].size() - res;
} bool cmp(const vector<int> &a, const vector<int> &b) {
return a.size() > b.size();
} int main() {
scanf("%d", &n);
for(int i = 0; i < n; i ++) {
int x;
scanf("%d", &x);
while(x--){
int p;
scanf("%d", &p);
vec[i].push_back(p);
}
}
sort(vec, vec + n, cmp);
int sz = 0;
t[sz++] = vec[0];
for(int i = 1; i < n; i ++) {
int fail = 0;
for(int j = 0; j < sz; j ++) {
if(han(vec[i], t[j])) {
fail = 1;
break;
}
}
if(fail) continue;
t[sz ++] = vec[i];
} n = sz; /*
for(int i = 0; i < n; i ++) {
for(int j = 0; j < t[i].size(); j ++) {
cout << t[i][j] << " ";
}
cout << endl;
}
*/ for(int i = 0; i < n; i ++) {
for(int j = 0; j < n; j ++) {
if(i == j) continue;
cost[i][j] = cal(i, j);
}
} for(int st = 0; st < (1 << n); st ++) {
for(int i = 0; i < n; i ++) {
dp[st][i] = 200000;
}
}
for(int i = 0; i < n; i ++) {
dp[1 << i][i] = t[i].size();
} for(int st = 1; st < (1 << n); st ++) {
for(int pre = 0; pre < n; pre ++) {
if(((1 << pre) & st) == 0) continue;
for(int now = 0; now < n; now ++) {
if((1 << now) & st) continue;
dp[st | (1 << now)][now] = min(dp[st | (1 << now)][now], dp[st][pre] + cost[pre][now]);
}
}
} int ans = dp[(1 << n) - 1][0];
for(int i = 0; i < n; i ++) {
ans = min(ans, dp[(1 << n) - 1][i]);
}
printf("%d\n", ans); return 0;
} /*
3
2 1 2
4 3 4 5 6
3 2 3 4 */

2017 JUST Programming Contest 2.0 题解的更多相关文章

  1. gym101343 2017 JUST Programming Contest 2.0

    A.On The Way to Lucky Plaza  (数论)题意:m个店 每个店可以买一个小球的概率为p       求恰好在第m个店买到k个小球的概率 题解:求在前m-1个店买k-1个球再*p ...

  2. 2018 JUST Programming Contest 1.0 题解

    题目链接  gym101778 Problem A 转化成绝对值之后算一下概率.这个题有点像 2018 ZOJ Monthly March Problem D ? 不过那个题要难一些~ #includ ...

  3. gym101532 2017 JUST Programming Contest 4.0

    台州学院ICPC赛前训练5 人生第一次ak,而且ak得还蛮快的,感谢队友带我飞 A 直接用claris的模板啊,他模板确实比较强大,其实就是因为更新的很快 #include<bits/stdc+ ...

  4. 2017 JUST Programming Contest 3.0 B. Linear Algebra Test

    B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input o ...

  5. 2017 JUST Programming Contest 3.0 I. Move Between Numbers

    I. Move Between Numbers time limit per test 2.0 s memory limit per test 256 MB input standard input ...

  6. 2017 JUST Programming Contest 3.0 D. Dice Game

    D. Dice Game time limit per test 1.0 s memory limit per test 256 MB input standard input output stan ...

  7. 2017 JUST Programming Contest 3.0 H. Eyad and Math

    H. Eyad and Math time limit per test 2.0 s memory limit per test 256 MB input standard input output ...

  8. 2017 JUST Programming Contest 3.0 K. Malek and Summer Semester

    K. Malek and Summer Semester time limit per test 1.0 s memory limit per test 256 MB input standard i ...

  9. 2017 JUST Programming Contest 3.0 E. The Architect Omar

    E. The Architect Omar time limit per test 1.0 s memory limit per test 256 MB input standard input ou ...

随机推荐

  1. C 排序 解题报告

    C 排序 题意 给一个\(1\sim n(n\le 10^6)\)排列,求这个排列用冒泡排序从小到大排序的第\(cnt\)步的状态.这里步的定义为,比较一次算一步. 贴个我看的不是很懂的题解,嗯不是很 ...

  2. 【bzoj3172】 Tjoi2013—单词

    http://www.lydsy.com/JudgeOnline/problem.php?id=3172 (题目链接) 题意 $n$个单词组成文本,问每个单词在文本中出现了几次. Solution 题 ...

  3. git other-误删恢复等

    修改未push的最后一次commit 如在commit后发现漏添加的文件或者commit message需要修改,则可以依次执行: git add FILE_UN_STAGED # 将未提交的文件添加 ...

  4. Java基础-赋值运算符Assignment Operators与条件运算符Condition Operators

    Java基础-赋值运算符Assignment Operators与条件运算符Condition Operators 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.赋值运算符 表 ...

  5. bzoj千题计划180:bzoj4411: [Usaco2016 Feb]Load balancing

    http://www.lydsy.com/JudgeOnline/problem.php?id=4411 用树状数组维护扫描线 一个树状数组维护扫描线之上的y<=i点,另一个维护扫描线之下y&l ...

  6. 给定一个整数,求解该整数最少能用多少个Fib数字相加得到

    一,问题描述 给定一个整数N,求解该整数最少能用多少个Fib数字相加得到 Fib数列,就是如: 1,1,2,3,5,8,13.... Fib数列,满足条件:Fib(n)=Fib(n-1)+Fib(n- ...

  7. [转载]在Windows下搭建Android开发环境

    http://jingyan.baidu.com/article/bea41d437a41b6b4c51be6c1.html 在Windows下搭建Android开发环境 | 浏览:30780 | 更 ...

  8. Internet Explorer 6 的15个讨厌的bug和简单的解决方法

    关于bug更全的,我推荐去这个网站hasLayout,整理的非常全!三年前就看了,最近手生,又翻出来看看~~虽然上面有很多bug讲解,但是我觉得目前用的比较多或者说是常见的应该属下面这篇文章,15 a ...

  9. PHP使用数据库的并发问题

    在并行系统中并发问题永远不可忽视.尽管PHP语言原生没有提供多线程机制,那并不意味着所有的操作都是线程安全的.尤其是在操作诸如订单.支付等业务系统中,更需要注意操作数据库的并发问题. 接下来我通过一个 ...

  10. 洛谷 P3916 【图的遍历】反向加边+dfs

    前言: 对于这类带环的图,一般记忆化搜索不能很好的对所有遍历的边进行更新取值.因为环上的点可以相互到达,所以他们的答案因当是同步更新的,而dfs一旦你回溯完环上某个点就不会在更新这个点的答案了,做不到 ...