昨天,刚接触道了李群和李代数,查了许多资料,也看了一些视屏。今天来谈谈自己的感受。

李群是有一个挪威数学家提出的,在十九二十世纪得到了很大的发展。

其归于非组合数学,现在简单介绍李群和李代数的概念。群的定义是一种集合加上一种运算的代数结构。其集合记为A,运算记为 . ,当其满足以下四条性质时,就称其为(A,.)群。

为了大家更好的理解,我还是放上讲师(高博slam十四讲其四)的ppt吧。

矩阵旋转

李群与李代数在slam中的应用的更多相关文章

  1. 视觉SLAM中的数学基础 第四篇 李群与李代数(2)

    前言 理解李群与李代数,是理解许多SLAM中关键问题的基础.本讲我们继续介绍李群李代数的相关知识,重点放在李群李代数的微积分上,这对解决姿态估计问题具有重要意义. 回顾 为了描述三维空间里的运动,我们 ...

  2. 视觉SLAM中的数学基础 第三篇 李群与李代数

    视觉SLAM中的数学基础 第三篇 李群与李代数 前言 在SLAM中,除了表达3D旋转与位移之外,我们还要对它们进行估计,因为SLAM整个过程就是在不断地估计机器人的位姿与地图.为了做这件事,需要对变换 ...

  3. 从零开始一起学习SLAM | 为啥需要李群与李代数?

    很多刚刚接触SLAM的小伙伴在看到李群和李代数这部分的时候,都有点蒙蒙哒,感觉突然到了另外一个世界,很多都不自觉的跳过了,但是这里必须强调一点,这部分在后续SLAM的学习中其实是非常重要的基础,不信你 ...

  4. SLAM中的EKF,UKF,PF原理简介

    这是我在知乎上问题写的答案,修改了一下排版,转到博客里.   原问题: 能否简单并且易懂地介绍一下多个基于滤波方法的SLAM算法原理? 目前SLAM后端都开始用优化的方法来做,题主想要了解一下之前基于 ...

  5. SLAM中的优化理论(一)—— 线性最小二乘

    最近想写一篇系列博客比较系统的解释一下 SLAM 中运用到的优化理论相关内容,包括线性最小二乘.非线性最小二乘.最小二乘工具的使用.最大似然与最小二 乘的关系以及矩阵的稀疏性等内容.一方面是督促自己对 ...

  6. SLAM中的优化理论(二)- 非线性最小二乘

    本篇博客为系列博客第二篇,主要介绍非线性最小二乘相关内容,线性最小二乘介绍请参见SLAM中的优化理论(一)-- 线性最小二乘.本篇博客期望通过下降法和信任区域法引出高斯牛顿和LM两种常用的非线性优化方 ...

  7. 视觉SLAM中相机详解

    视觉SLAM中,通常是指使用相机来解决定位和建图问题. SLAM中使用的相机往往更加简单,不携带昂贵的镜头,以一定的速率拍摄周围的环境,形成一个连续的视频流. 相机分类: 单目相机:只是用一个摄像头进 ...

  8. SLAM中的变换(旋转与位移)表示方法

    1.旋转矩阵 注:旋转矩阵标题下涉及到的SLAM均不包含位移. 根据同一点P在不同坐标系下e(e1,e2,e3)e'(e1',e2',e3')的坐标a(a1,a2,a3)a'(a1',a2',a3') ...

  9. 视觉SLAM中的数学基础 第二篇 四元数

    视觉SLAM中的数学基础 第二篇 四元数 什么是四元数 相比欧拉角,四元数(Quaternion)则是一种紧凑.易于迭代.又不会出现奇异值的表示方法.它在程序中广为使用,例如ROS和几个著名的SLAM ...

随机推荐

  1. C# post json 匿名类 序列化

    //第一步 建立HTTP请求对象 var httpWebRequest = (HttpWebRequest)WebRequest.Create(apiURL); httpWebRequest.Cont ...

  2. Java语言的主要特点

    Java语言有很多的优点,可靠.安全.编译和解释型语言.分布式.多线程.完全面向对象.与平台无关性等等. 与平台无关性 Java语言最大的优势在于与平台无关性,也就是可以跨平台使用. 绝大多数的编程语 ...

  3. redis之禁用保护模式以及修改监听IP

    今天在安装filebeat的时候,出现了关于redis报错的问题,所以来总结一下: 报错信息是: (error) DENIED Redis is running in protected mode b ...

  4. 博客系统实战——SprintBoot 集成Thymeleaf 实现用户增删查改(含源码)

    近来在学习SprintBoot +Thymeleaf +Maven搭建自己的博客系统,故在学习过程中在此记录一下,也希望能给广大正在学习SprintBoot和Thymeleaf的朋友们一个参考. 以下 ...

  5. es6安装babel包

    1.前面下载node.js及安装淘宝镜像可以查看我写的vue.js环境搭建 2.安装完node后,安装babel npm install -g babel-cli 3.检验babel是否安装成功: b ...

  6. Swift Package Manager(一)初探

    一句话:Swift Package Manager(swift包管理器,简称:SPM)就是在swift开发中用来替代CocoaPod的:在swift开发中,SPM完全可以替代CocoaPod的功能,并 ...

  7. MYSQL一次千万级连表查询优化(一)

    摘自网上学习之用 https://blog.csdn.net/Tim_phper/article/details/78344444 概述: 交代一下背景,这算是一次项目经验吧,属于公司一个已上线平台的 ...

  8. Kafka学习之路 (三)Kafka的高可用

    一.高可用的由来 1.1 为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费, ...

  9. Mysql双主 keepalived+lvs实现mysql高可用性

    MySQL复制 能够保证数据的冗余的同时可以做读写分离来分担系统压力,如果是主主复制还可以很好的避免主节点的单点故障.但是MySQL主主复制存在一些问题无法满足我们的实际需要:未提供统一访问入口来实现 ...

  10. Python2.7-os.path

    os.path 模块,实现了对文件路径的操作,但是不操作文件.由于不同系统文件路径格式不同,os.path 总是调用适合当前系统的版本,你也可以手动导入别的系统的(posixpath,ntpath,m ...